Benchmark / test report
Container name: Singularity.Siesta-4.1.5-foss-2021a.localimage.sif
test script
#!/bin/bash
#SBATCH -J plcr-siesta-cpu-test
#SBATCH -N 4
#SBATCH --ntasks-per-node=48
PLCR=${PLCR:-/net/pr2/projects/plgrid/plggsoftware/containers}
CONT=${1:-Singularity.Siesta-4.1.5-foss-2021a.localimage.sif}
echo "PLCR test: $SLURM_JOB_NAME"
echo "PLCR jobid: $SLURM_JOBID"
echo "PLCR path: $PLCR"
echo "Test performed on: "`date`
echo "Testing container: $CONT"
SHA=`dd bs=1M if=$PLCR/images/$CONT 2>/dev/null | sha256sum | cut -d' ' -f1`
echo "Container checksum: $SHA"
export I_MPI_PMI_LIBRARY=$PLCR/local/pmi2/libpmi2.so
cd $TMPDIR
wget 'https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/32_h2o/32_h2o.fdf'
wget 'https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/Pseudos/H_lyp.psf'
wget 'https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/Pseudos/O_lyp.psf'
sed -i 's/DM\.UseSaveDM/DM\.UseSaveDM\nMD.TypeOfRun CG\nMD.Steps 10\n/' 32_h2o.fdf
sed -i 's/DM\.Tolerance 1.d-4//DM\.Tolerance 1.d-8/' 32_h2o.fdf
sed -i 's/%Block PAO.Basis/PAO.BasisSize TZ2P\n%Block PAO.Basis/' 32_h2o.fdf
srun --mpi=pmix --cpu-bind=cores singularity -s run -B $I_MPI_PMI_LIBRARY -B $PWD:/host_pwd --pwd /host_pwd $PLCR/images/$CONT siesta 32_h2o.fdf
RC=$?
grep 'End of run' CLOCK | awk '{print $4" s"}' > result
echo "Test completed, rc=$RC, " $(cat result)
test results
PLCR test: plcr-siesta-cpu-test
PLCR jobid: 357093
PLCR path: /net/pr2/projects/plgrid/plggsoftware/containers
Test performed on: śro, 13 kwi 2022, 11:55:17 CEST
Testing container: Singularity.Siesta-4.1.5-foss-2021a.localimage.sif
Container checksum: a3e885bfa1473a35fd26732565b6d248be5d5d330828b7723af230a7ee1eb08e
--2022-04-13 11:55:22-- https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/32_h2o/32_h2o.fdf
Resolving gitlab.com (gitlab.com)... 172.65.251.78, 2606:4700:90:0:f22e:fbec:5bed:a9b9
Connecting to gitlab.com (gitlab.com)|172.65.251.78|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 6083 (5,9K) [text/plain]
Saving to: ‘32_h2o.fdf’
0K ..... 100% 23,1M=0s
2022-04-13 11:55:22 (23,1 MB/s) - ‘32_h2o.fdf’ saved [6083/6083]
--2022-04-13 11:55:22-- https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/Pseudos/H_lyp.psf
Resolving gitlab.com (gitlab.com)... 172.65.251.78, 2606:4700:90:0:f22e:fbec:5bed:a9b9
Connecting to gitlab.com (gitlab.com)|172.65.251.78|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 122825 (120K) [text/plain]
Saving to: ‘H_lyp.psf’
0K .......... .......... .......... .......... .......... 41% 1,84M 0s
50K .......... .......... .......... .......... .......... 83% 987K 0s
100K .......... ......... 100% 200M=0,08s
2022-04-13 11:55:23 (1,52 MB/s) - ‘H_lyp.psf’ saved [122825/122825]
--2022-04-13 11:55:23-- https://gitlab.com/siesta-project/siesta/-/raw/master/Tests/Pseudos/O_lyp.psf
Resolving gitlab.com (gitlab.com)... 172.65.251.78, 2606:4700:90:0:f22e:fbec:5bed:a9b9
Connecting to gitlab.com (gitlab.com)|172.65.251.78|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 146359 (143K) [text/plain]
Saving to: ‘O_lyp.psf’
0K .......... .......... .......... .......... .......... 34% 1,80M 0s
50K .......... .......... .......... .......... .......... 69% 2,64M 0s
100K .......... .......... .......... .......... .. 100% 4,65M=0,05s
2022-04-13 11:55:24 (2,55 MB/s) - ‘O_lyp.psf’ saved [146359/146359]
sed: -e expression #1, char 24: unknown option to `s'
[ac0016:66873] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55265] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60414] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67274] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:66964] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67000] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67019] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67021] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67028] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67014] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67023] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67045] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67017] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67018] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67038] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67022] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55351] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55228] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55349] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55360] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55362] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55365] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55383] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55368] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55367] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55369] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67041] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67012] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55373] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55357] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55376] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67031] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67042] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55375] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67050] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55374] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55381] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55372] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60415] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60417] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60296] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60416] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60360] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60421] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60423] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60422] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60427] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60437] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60436] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60441] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60419] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60452] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60447] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55378] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55377] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55382] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67026] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60425] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55392] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55384] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55386] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67037] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55363] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60432] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67029] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55400] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60429] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60430] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67043] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55387] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55396] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60450] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67016] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55388] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67036] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55393] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60442] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67046] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67052] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67020] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60448] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55395] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55389] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55371] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67015] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60426] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55359] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55398] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55394] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55401] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67054] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67286] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55380] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67290] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67030] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67293] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67288] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55397] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67291] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55385] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67139] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67287] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67163] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67299] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67300] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67302] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67143] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67292] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67324] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67313] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67319] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67329] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55404] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60434] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67318] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55390] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60451] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60440] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60456] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60420] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60413] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67035] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60455] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60418] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55391] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67034] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60443] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60458] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60428] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67311] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67309] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60433] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67314] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60431] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60454] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60449] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67044] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67331] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67296] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67326] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60445] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67051] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60424] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67327] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60457] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67055] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67321] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67315] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67304] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67032] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67039] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67040] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67056] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67057] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67024] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67317] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60439] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67316] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67053] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67332] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67330] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67320] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55403] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67322] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67033] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60446] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67307] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67323] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55379] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67306] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67308] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55402] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67025] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67049] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55399] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67047] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67048] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67303] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67298] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0016:67027] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60435] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67301] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67312] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67305] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0015:55370] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67328] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60438] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60453] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67325] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67310] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0011:60444] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
[ac0009:67333] PMIX ERROR: ERROR in file gds_ds12_lock_pthread.c at line 168
Siesta Version : 4.1.5
Architecture : unknown
Compiler version: GNU Fortran (GCC) 10.3.0
Compiler flags : mpifort -fPIC -O2 -ftree-vectorize -march=native -mtune=native -mno-recip -faallow-argument-mismatch
PP flags : -DFC_HAVE_ABORT -DF2003 -DMPI -DCDF -DNCDF -DNCDF_4 -DNCDF_PARALLEL -I/app/sooftware/netCDF-Fortran/4.5.3-gompi-2021a/include -DSIESTA__ELPA -I/app/software/ELPA/2021.05.001-foss-2021a/include/elpa-2021.05.001/modules -DSIESTA__METIS
Libraries : libncdf.a libfdict.a -lscalapack -lflexiblas -lgfortran -lnetcdff -L/app/softtware/ELPA/2021.05.001-foss-2021a/lib -lelpa -L/app/software/METIS/5.1.0-GCCcore-10.3.0/lib -lmetis
PARALLEL version
NetCDF support
NetCDF-4 support
NetCDF-4 MPI-IO support
METIS ordering support
* Running on 192 nodes in parallel
>> Start of run: 13-APR-2022 11:55:29
***********************
* WELCOME TO SIESTA *
***********************
reinit: Reading from 32_h2o.fdf
reinit: -----------------------------------------------------------------------
reinit: System Name: Heavy liquid water, 32 molecules
reinit: -----------------------------------------------------------------------
reinit: System Label: 32_h2o
reinit: -----------------------------------------------------------------------
initatom: Reading input for the pseudopotentials and atomic orbitals ----------
Species number: 1 Atomic number: 8 Label: O_lyp
Species number: 2 Atomic number: 1 Label: H_lyp
Ground state valence configuration: 2s02 2p04
Reading pseudopotential information in formatted form from O_lyp.psf
Valence configuration for pseudopotential generation:
2s( 2.00) rc: 1.14
2p( 4.00) rc: 1.14
3d( 0.00) rc: 1.14
4f( 0.00) rc: 1.14
Ground state valence configuration: 1s01
Reading pseudopotential information in formatted form from H_lyp.psf
Valence configuration for pseudopotential generation:
1s( 1.00) rc: 1.25
2p( 0.00) rc: 1.25
3d( 0.00) rc: 1.25
4f( 0.00) rc: 1.25
remass: Read atomic mass for species 2 as 2.00000
For O_lyp, standard SIESTA heuristics set lmxkb to 2
(one more than the basis l, including polarization orbitals).
Use PS.lmax or PS.KBprojectors blocks to override.
For H_lyp, standard SIESTA heuristics set lmxkb to 1
(one more than the basis l, including polarization orbitals).
Use PS.lmax or PS.KBprojectors blocks to override.
<basis_specs>
===============================================================================
O_lyp Z= 8 Mass= 16.000 Charge=-0.24233
Lmxo=1 Lmxkb= 2 BasisType=split Semic=F
L=0 Nsemic=0 Cnfigmx=2
i=1 nzeta=1 polorb=0 (2s)
splnorm: 0.15000
vcte: 23.361
rinn: 3.3972
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 4.5077
lambdas: 1.0000
L=1 Nsemic=0 Cnfigmx=2
i=1 nzeta=1 polorb=0 (2p)
splnorm: 0.15000
vcte: 2.7833
rinn: 5.1425
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 6.1500
lambdas: 1.0000
-------------------------------------------------------------------------------
L=0 Nkbl=1 erefs: 0.17977+309
L=1 Nkbl=1 erefs: 0.17977+309
L=2 Nkbl=1 erefs: 0.17977+309
===============================================================================
</basis_specs>
atom: Called for O_lyp (Z = 8)
read_vps: Pseudopotential generation method:
read_vps: ATM3 Troullier-Martins
Valence charge for ps generation: 6.00000
read_vps: Pseudopotential includes a core correction:
read_vps: Pseudo-core for xc-correction
xc_check: Exchange-correlation functional:
xc_check: GGA Becke Lee Yang Parr
V l=0 = -2*Zval/r beyond r= 1.1278
V l=1 = -2*Zval/r beyond r= 1.1278
V l=2 = -2*Zval/r beyond r= 1.1278
All V_l potentials equal beyond r= 1.1278
This should be close to max(r_c) in ps generation
All pots = -2*Zval/r beyond r= 1.1278
VLOCAL1: 99.0% of the norm of Vloc inside 34.126 Ry
VLOCAL1: 99.9% of the norm of Vloc inside 77.774 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 1.37759
atom: Maximum radius for r*vlocal+2*Zval: 1.18566
GHOST: No ghost state for L = 0
GHOST: No ghost state for L = 1
GHOST: No ghost state for L = 2
KBgen: Kleinman-Bylander projectors:
l= 0 rc= 1.262145 el= -1.745958 Ekb= 9.224384 kbcos= 0.329611
l= 1 rc= 1.262145 el= -0.661632 Ekb= -7.951208 kbcos= -0.394018
l= 2 rc= 1.343567 el= 0.001587 Ekb= -1.921621 kbcos= -0.003500
KBgen: Total number of Kleinman-Bylander projectors: 9
atom: -------------------------------------------------------------------------
atom: SANKEY-TYPE ORBITALS:
atom: basis set generated (by rescaling the valence charge)
atom: for an anion of charge -0.2423
SPLIT: Orbitals with angular momentum L= 0
SPLIT: Basis orbitals for state 2s
izeta = 1
lambda = 1.000000
rc = 4.574469
energy = -1.742869
kinetic = 1.486567
potential(screened) = -3.229436
potential(ionic) = -11.047338
SPLIT: Orbitals with angular momentum L= 1
SPLIT: Basis orbitals for state 2p
izeta = 1
lambda = 1.000000
rc = 6.174996
energy = -0.654632
kinetic = 4.291881
potential(screened) = -4.946513
potential(ionic) = -12.289299
atom: Total number of Sankey-type orbitals: 4
atm_pop: Valence configuration (for local Pseudopot. screening):
2s( 2.00)
2p( 4.00)
Vna: chval, zval: 6.00000 6.00000
Vna: Cut-off radius for the neutral-atom potential: 6.174996
comcore: Pseudo-core radius Rcore= 1.377587
atom: _________________________________________________________________________
<basis_specs>
===============================================================================
H_lyp Z= 1 Mass= 2.0000 Charge= 0.46527
Lmxo=0 Lmxkb= 1 BasisType=split Semic=F
L=0 Nsemic=0 Cnfigmx=1
i=1 nzeta=1 polorb=0 (1s)
splnorm: 0.15000
vcte: 99.931
rinn: 2.5993
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 4.2036
lambdas: 1.0000
-------------------------------------------------------------------------------
L=0 Nkbl=1 erefs: 0.17977+309
L=1 Nkbl=1 erefs: 0.17977+309
===============================================================================
</basis_specs>
atom: Called for H_lyp (Z = 1)
read_vps: Pseudopotential generation method:
read_vps: ATM3 Troullier-Martins
Valence charge for ps generation: 1.00000
xc_check: Exchange-correlation functional:
xc_check: GGA Becke Lee Yang Parr
V l=0 = -2*Zval/r beyond r= 1.2343
V l=1 = -2*Zval/r beyond r= 1.2189
All V_l potentials equal beyond r= 1.2343
This should be close to max(r_c) in ps generation
All pots = -2*Zval/r beyond r= 1.2343
VLOCAL1: 99.0% of the norm of Vloc inside 28.493 Ry
VLOCAL1: 99.9% of the norm of Vloc inside 64.935 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 1.45251
atom: Maximum radius for r*vlocal+2*Zval: 1.21892
GHOST: No ghost state for L = 0
GHOST: No ghost state for L = 1
KBgen: Kleinman-Bylander projectors:
l= 0 rc= 1.364359 el= -0.482584 Ekb= -2.022767 kbcos= -0.348839
l= 1 rc= 1.434438 el= 0.000637 Ekb= -0.492969 kbcos= -0.021451
KBgen: Total number of Kleinman-Bylander projectors: 4
atom: -------------------------------------------------------------------------
atom: SANKEY-TYPE ORBITALS:
atom: basis set generated (by rescaling the valence charge)
atom: for a cation of charge 0.4653
SPLIT: Orbitals with angular momentum L= 0
SPLIT: Basis orbitals for state 1s
izeta = 1
lambda = 1.000000
rc = 4.260636
energy = -0.876287
kinetic = 1.366135
potential(screened) = -2.242422
potential(ionic) = -2.296941
atom: Total number of Sankey-type orbitals: 1
atm_pop: Valence configuration (for local Pseudopot. screening):
1s( 1.00)
Vna: chval, zval: 1.00000 1.00000
Vna: Cut-off radius for the neutral-atom potential: 4.260636
atom: _________________________________________________________________________
prinput: Basis input ----------------------------------------------------------
PAO.BasisType split
%block ChemicalSpeciesLabel
1 8 O_lyp # Species index, atomic number, species label
2 1 H_lyp # Species index, atomic number, species label
%endblock ChemicalSpeciesLabel
%block PAO.Basis # Define Basis set
O_lyp 2 -0.242 # Label, l-shells, ionic net charge
n=2 0 1 # n, l, Nzeta
4.574
1.000
n=2 1 1 # n, l, Nzeta
6.175
1.000
H_lyp 1 0.465 # Label, l-shells, ionic net charge
n=1 0 1 # n, l, Nzeta
4.261
1.000
%endblock PAO.Basis
prinput: ----------------------------------------------------------------------
Dumping basis to NetCDF file O_lyp.ion.nc
Dumping basis to NetCDF file H_lyp.ion.nc
coor: Atomic-coordinates input format = Cartesian coordinates
coor: (in Angstroms)
siesta: Atomic coordinates (Bohr) and species
siesta: 0.35905 6.95419 12.22653 1 1
siesta: -1.19053 7.76678 12.96353 2 2
siesta: -0.17008 5.57469 11.03600 2 3
siesta: 2.81569 13.28478 13.54934 1 4
siesta: 3.89284 14.75877 13.07691 2 5
siesta: 1.68186 13.77611 14.98553 2 6
siesta: 12.94463 0.49133 12.56668 1 7
siesta: 14.24854 0.18897 13.88949 2 8
siesta: 11.56513 1.56847 13.28478 2 9
siesta: 11.45174 18.21697 2.32436 1 10
siesta: 11.58403 19.80434 1.30391 2 11
siesta: 12.32102 18.46263 3.98732 2 12
siesta: 11.30057 13.77611 5.10226 1 13
siesta: 11.75410 15.08002 3.81725 2 14
siesta: 9.82658 14.39972 6.12272 2 15
siesta: 0.09449 7.74788 4.83770 1 16
siesta: -1.36060 8.39039 5.85815 2 17
siesta: -0.54802 6.78412 3.34482 2 18
siesta: 1.03935 13.24699 8.10693 1 19
siesta: 1.53068 13.17140 9.92107 2 20
siesta: -0.56692 12.28322 7.84237 2 21
siesta: 10.39350 3.70386 16.72408 1 22
siesta: 10.29901 3.60938 18.61381 2 23
siesta: 10.43129 5.51800 16.17606 2 24
siesta: 7.21876 13.22809 9.07069 1 25
siesta: 8.06913 11.52733 9.01400 2 26
siesta: 5.44241 13.02022 9.69430 2 27
siesta: 17.42328 9.50533 16.98864 1 28
siesta: 16.95085 9.33525 15.17451 2 29
siesta: 18.33035 7.95575 17.57446 2 30
siesta: 10.18563 1.20943 9.67540 1 31
siesta: 8.65495 1.22832 10.77144 2 32
siesta: 10.24232 2.77790 8.63605 2 33
siesta: 10.60137 4.19519 3.04246 1 34
siesta: 11.31946 2.60782 3.74166 2 35
siesta: 8.93841 4.55424 3.87394 2 36
siesta: 13.32257 1.20943 6.95419 1 37
siesta: 13.05801 1.34171 8.82502 2 38
siesta: 14.90995 0.24566 6.61404 2 39
siesta: 10.69585 10.14783 16.34614 1 40
siesta: 10.92262 11.39505 14.94774 2 41
siesta: 11.56513 10.79034 17.91461 2 42
siesta: 4.21409 9.92107 5.19675 1 43
siesta: 4.45976 8.33370 6.21720 2 44
siesta: 3.66607 11.31946 6.33059 2 45
siesta: 13.83280 11.98087 1.47399 1 46
siesta: 14.94774 11.48954 0.03779 2 47
siesta: 13.30368 13.79501 1.26612 2 48
siesta: 5.80146 1.19053 11.67851 1 49
siesta: 5.59359 2.96687 12.30212 2 50
siesta: 5.70698 0.00000 13.13360 2 51
siesta: 0.69920 14.47531 18.25476 1 52
siesta: 0.98266 14.87215 20.06890 2 53
siesta: 0.13228 12.68007 18.08469 2 54
siesta: 6.02823 15.30679 17.93351 1 55
siesta: 7.78567 15.98709 18.02799 2 56
siesta: 5.91485 13.70052 18.91617 2 57
siesta: 6.40617 9.61871 0.37795 1 58
siesta: 5.42352 8.05024 0.05669 2 59
siesta: 7.86126 9.71320 -0.83148 2 60
siesta: 15.40127 10.80924 6.14161 1 61
siesta: 15.53355 9.12738 5.27234 2 62
siesta: 13.62493 11.45174 5.99043 2 63
siesta: 8.93841 9.44863 3.60938 1 64
siesta: 10.09114 10.96042 3.68497 2 65
siesta: 7.14317 10.03445 3.74166 2 66
siesta: 5.97154 16.15716 5.83926 1 67
siesta: 4.34637 15.57135 6.63294 2 68
siesta: 5.89595 15.89260 3.96843 2 69
siesta: 1.56847 5.14006 0.68030 1 70
siesta: 1.47399 5.12116 2.57003 2 71
siesta: 0.00000 4.36527 -0.03779 2 72
siesta: 17.06423 1.62517 2.51334 1 73
siesta: 18.02799 1.64406 0.88817 2 74
siesta: 18.12248 0.83148 3.85504 2 75
siesta: 4.96998 6.16051 13.60603 1 76
siesta: 3.47710 7.12427 12.96353 2 77
siesta: 4.79991 5.87705 15.45797 2 78
siesta: 17.30990 17.19651 5.49911 1 79
siesta: 18.50043 17.91461 4.21409 2 80
siesta: 18.06579 15.62804 6.23610 2 81
siesta: 1.36060 3.13695 6.00933 1 82
siesta: 1.03935 4.70542 4.98888 2 83
siesta: 3.06136 2.43775 5.59359 2 84
siesta: 4.51645 6.14161 8.48487 1 85
siesta: 5.74477 4.74321 8.27700 2 86
siesta: 4.89439 7.08648 10.07224 2 87
siesta: 11.22498 14.07847 12.32102 1 88
siesta: 12.16984 15.68473 11.96197 2 89
siesta: 9.56202 14.11626 11.41395 2 90
siesta: 16.23275 18.06579 16.27055 1 91
siesta: 17.25321 16.76188 17.17762 2 92
siesta: 15.62804 19.36970 17.51777 2 93
siesta: 8.08803 8.01244 9.82658 1 94
siesta: 8.65495 6.65184 8.65495 2 95
siesta: 7.35104 7.25655 11.39505 2 96
siesta: System type = bulk
initatomlists: Number of atoms, orbitals, and projectors: 96 192 544
coxmol: Writing XMOL coordinates into file 32_h2o.xyz
siesta: ******************** Simulation parameters ****************************
siesta:
siesta: The following are some of the parameters of the simulation.
siesta: A complete list of the parameters used, including default values,
siesta: can be found in file out.fdf
siesta:
redata: Spin configuration = none
redata: Number of spin components = 1
redata: Time-Reversal Symmetry = T
redata: Spin spiral = F
redata: Long output = T
redata: Number of Atomic Species = 2
redata: Charge density info will appear in .RHO file
redata: Write Mulliken Pop. = Atomic and Orbital charges
redata: Matel table size (NRTAB) = 1024
redata: Mesh Cutoff = 150.0000 Ry
redata: Net charge of the system = 0.0000 |e|
redata: Min. number of SCF Iter = 0
redata: Max. number of SCF Iter = 1000
redata: SCF convergence failure will abort job
redata: SCF mix quantity = Hamiltonian
redata: Mix DM or H after convergence = F
redata: Recompute H after scf cycle = F
redata: Mix DM in first SCF step = T
redata: Write Pulay info on disk = F
redata: New DM Occupancy tolerance = 0.000000000001
redata: No kicks to SCF
redata: DM Mixing Weight for Kicks = 0.5000
redata: Require Harris convergence for SCF = F
redata: Harris energy tolerance for SCF = 0.000100 eV
redata: Require DM convergence for SCF = T
redata: DM tolerance for SCF = 0.000100
redata: Require EDM convergence for SCF = F
redata: EDM tolerance for SCF = 0.001000 eV
redata: Require H convergence for SCF = T
redata: Hamiltonian tolerance for SCF = 0.001000 eV
redata: Require (free) Energy convergence for SCF = F
redata: (free) Energy tolerance for SCF = 0.000100 eV
redata: Using Saved Data (generic) = F
redata: Use continuation files for DM = T
redata: Neglect nonoverlap interactions = F
redata: Method of Calculation = Diagonalization
redata: Electronic Temperature = 58.0222 K
redata: Fix the spin of the system = F
redata: Dynamics option = CG coord. optimization
redata: Variable cell = F
redata: Use continuation files for CG = F
redata: Max atomic displ per move = 0.1058 Ang
redata: Maximum number of optimization moves = 10
redata: Force tolerance = 0.0400 eV/Ang
mix.SCF: Pulay mixing = Pulay
mix.SCF: Variant = stable
mix.SCF: History steps = 3
mix.SCF: Linear mixing weight = 0.100000
mix.SCF: Mixing weight = 0.100000
mix.SCF: SVD condition = 0.1000E-07
redata: Save all siesta data in one NC = F
redata: ***********************************************************************
%block SCF.Mixers
Pulay
%endblock SCF.Mixers
%block SCF.Mixer.Pulay
# Mixing method
method pulay
variant stable
# Mixing options
weight 0.1000
weight.linear 0.1000
history 3
%endblock SCF.Mixer.Pulay
DM_history_depth set to one: no extrapolation allowed by default for geometry relaxation
Size of DM history Fstack: 1
Total number of electrons: 256.000000
Total ionic charge: 256.000000
* ProcessorY, Blocksize: 12 1
* Orbital distribution balance (max,min): 1 1
Kpoints in: 1 . Kpoints trimmed: 1
siesta: k-point coordinates (Bohr**-1) and weights:
siesta: 1 0.000000 0.000000 0.000000 1.000000
siesta: k-grid: Number of k-points = 1
siesta: k-grid: Cutoff (effective) = 4.933 Ang
siesta: k-grid: Supercell and displacements
siesta: k-grid: 1 0 0 0.000
siesta: k-grid: 0 1 0 0.000
siesta: k-grid: 0 0 1 0.000
diag: Algorithm = D&C
diag: Parallel over k = F
diag: Use parallel 2D distribution = T
diag: Parallel block-size = 1
diag: Parallel distribution = 12 x 16
diag: Used triangular part = Lower
diag: Absolute tolerance = 0.100E-15
diag: Orthogonalization factor = 0.100E-05
diag: Memory factor = 1.0000
ts: **************************************************************
ts: Save H and S matrices = F
ts: Save DM and EDM matrices = F
ts: Only save the overlap matrix S = F
ts: **************************************************************
************************ Begin: TS CHECKS AND WARNINGS ************************
************************ End: TS CHECKS AND WARNINGS **************************
====================================
Begin CG opt. move = 0
====================================
outcoor: Atomic coordinates (Ang):
0.19000000 3.68000000 6.47000000 1 1 O_lyp
-0.63000000 4.11000000 6.86000000 2 2 H_lyp
-0.09000000 2.95000000 5.84000000 2 3 H_lyp
1.49000000 7.03000000 7.17000000 1 4 O_lyp
2.06000000 7.81000000 6.92000000 2 5 H_lyp
0.89000000 7.29000000 7.93000000 2 6 H_lyp
6.85000000 0.26000000 6.65000000 1 7 O_lyp
7.54000000 0.10000000 7.35000000 2 8 H_lyp
6.12000000 0.83000000 7.03000000 2 9 H_lyp
6.06000000 9.64000000 1.23000000 1 10 O_lyp
6.13000000 10.48000000 0.69000000 2 11 H_lyp
6.52000000 9.77000000 2.11000000 2 12 H_lyp
5.98000000 7.29000000 2.70000000 1 13 O_lyp
6.22000000 7.98000000 2.02000000 2 14 H_lyp
5.20000000 7.62000000 3.24000000 2 15 H_lyp
0.05000000 4.10000000 2.56000000 1 16 O_lyp
-0.72000000 4.44000000 3.10000000 2 17 H_lyp
-0.29000000 3.59000000 1.77000000 2 18 H_lyp
0.55000000 7.01000000 4.29000000 1 19 O_lyp
0.81000000 6.97000000 5.25000000 2 20 H_lyp
-0.30000000 6.50000000 4.15000000 2 21 H_lyp
5.50000000 1.96000000 8.85000000 1 22 O_lyp
5.45000000 1.91000000 9.85000000 2 23 H_lyp
5.52000000 2.92000000 8.56000000 2 24 H_lyp
3.82000000 7.00000000 4.80000000 1 25 O_lyp
4.27000000 6.10000000 4.77000000 2 26 H_lyp
2.88000000 6.89000000 5.13000000 2 27 H_lyp
9.22000000 5.03000000 8.99000000 1 28 O_lyp
8.97000000 4.94000000 8.03000000 2 29 H_lyp
9.70000000 4.21000000 9.30000000 2 30 H_lyp
5.39000000 0.64000000 5.12000000 1 31 O_lyp
4.58000000 0.65000000 5.70000000 2 32 H_lyp
5.42000000 1.47000000 4.57000000 2 33 H_lyp
5.61000000 2.22000000 1.61000000 1 34 O_lyp
5.99000000 1.38000000 1.98000000 2 35 H_lyp
4.73000000 2.41000000 2.05000000 2 36 H_lyp
7.05000000 0.64000000 3.68000000 1 37 O_lyp
6.91000000 0.71000000 4.67000000 2 38 H_lyp
7.89000000 0.13000000 3.50000000 2 39 H_lyp
5.66000000 5.37000000 8.65000000 1 40 O_lyp
5.78000000 6.03000000 7.91000000 2 41 H_lyp
6.12000000 5.71000000 9.48000000 2 42 H_lyp
2.23000000 5.25000000 2.75000000 1 43 O_lyp
2.36000000 4.41000000 3.29000000 2 44 H_lyp
1.94000000 5.99000000 3.35000000 2 45 H_lyp
7.32000000 6.34000000 0.78000000 1 46 O_lyp
7.91000000 6.08000000 0.02000000 2 47 H_lyp
7.04000000 7.30000000 0.67000000 2 48 H_lyp
3.07000000 0.63000000 6.18000000 1 49 O_lyp
2.96000000 1.57000000 6.51000000 2 50 H_lyp
3.02000000 0.00000000 6.95000000 2 51 H_lyp
0.37000000 7.66000000 9.66000000 1 52 O_lyp
0.52000000 7.87000000 10.62000000 2 53 H_lyp
0.07000000 6.71000000 9.57000000 2 54 H_lyp
3.19000000 8.10000000 9.49000000 1 55 O_lyp
4.12000000 8.46000000 9.54000000 2 56 H_lyp
3.13000000 7.25000000 10.01000000 2 57 H_lyp
3.39000000 5.09000000 0.20000000 1 58 O_lyp
2.87000000 4.26000000 0.03000000 2 59 H_lyp
4.16000000 5.14000000 -0.44000000 2 60 H_lyp
8.15000000 5.72000000 3.25000000 1 61 O_lyp
8.22000000 4.83000000 2.79000000 2 62 H_lyp
7.21000000 6.06000000 3.17000000 2 63 H_lyp
4.73000000 5.00000000 1.91000000 1 64 O_lyp
5.34000000 5.80000000 1.95000000 2 65 H_lyp
3.78000000 5.31000000 1.98000000 2 66 H_lyp
3.16000000 8.55000000 3.09000000 1 67 O_lyp
2.30000000 8.24000000 3.51000000 2 68 H_lyp
3.12000000 8.41000000 2.10000000 2 69 H_lyp
0.83000000 2.72000000 0.36000000 1 70 O_lyp
0.78000000 2.71000000 1.36000000 2 71 H_lyp
0.00000000 2.31000000 -0.02000000 2 72 H_lyp
9.03000000 0.86000000 1.33000000 1 73 O_lyp
9.54000000 0.87000000 0.47000000 2 74 H_lyp
9.59000000 0.44000000 2.04000000 2 75 H_lyp
2.63000000 3.26000000 7.20000000 1 76 O_lyp
1.84000000 3.77000000 6.86000000 2 77 H_lyp
2.54000000 3.11000000 8.18000000 2 78 H_lyp
9.16000000 9.10000000 2.91000000 1 79 O_lyp
9.79000000 9.48000000 2.23000000 2 80 H_lyp
9.56000000 8.27000000 3.30000000 2 81 H_lyp
0.72000000 1.66000000 3.18000000 1 82 O_lyp
0.55000000 2.49000000 2.64000000 2 83 H_lyp
1.62000000 1.29000000 2.96000000 2 84 H_lyp
2.39000000 3.25000000 4.49000000 1 85 O_lyp
3.04000000 2.51000000 4.38000000 2 86 H_lyp
2.59000000 3.75000000 5.33000000 2 87 H_lyp
5.94000000 7.45000000 6.52000000 1 88 O_lyp
6.44000000 8.30000000 6.33000000 2 89 H_lyp
5.06000000 7.47000000 6.04000000 2 90 H_lyp
8.59000000 9.56000000 8.61000000 1 91 O_lyp
9.13000000 8.87000000 9.09000000 2 92 H_lyp
8.27000000 10.25000000 9.27000000 2 93 H_lyp
4.28000000 4.24000000 5.20000000 1 94 O_lyp
4.58000000 3.52000000 4.58000000 2 95 H_lyp
3.89000000 3.84000000 6.03000000 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 0
<sparsity:sparsity for geom step 0
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 7>
<dData1D:(new from dSpData1D) n=126, refcount: 1>
refcount: 1>
new_DM -- step: 1
Initializing Density Matrix...
Attempting to read DM from file... Failed...
DM filled with atomic data:
<dSpData2D:DM initialized from atoms
<sparsity:sparsity for geom step 0
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 8>
<dData2D:DM n=126 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 1: 9 14: 17 33: 40
3 11: 20 13: 17 13: 17
4 11: 20 1: 12 10: 12
5 22: 30 32: 40 9: 11
6 18: 25 1: 9 18: 21
7 1: 10 1: 12 18: 20
8 1: 10 1: 8 21: 27
9 21: 32 1: 10 1: 3
10 1: 10 9: 12 21: 27
11 32: 40 32: 40 1: 3
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 21: 30 1: 9 9: 11
16 21: 32 1: 4 4: 8
17 26: 40 1: 9 18: 21
18 21: 32 5: 10 4: 8
19 1: 8 1: 7 5: 9
20 33: 40 1: 10 1: 3
21 11: 20 1: 7 13: 17
22 21: 30 5: 9 12: 17
23 11: 17 8: 12 21: 27
24 26: 40 5: 9 22: 29
25 1: 10 1: 7 13: 17
26 31: 40 1: 9 9: 11
27 1: 9 1: 13 28: 32
28 31: 40 6: 9 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 21: 30 1: 4 12: 17
33 9: 20 1: 8 5: 9
34 1: 8 8: 13 5: 9
35 9: 20 9: 13 5: 9
36 1: 10 1: 12 10: 12
37 32: 40 10: 14 12: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 26: 40 1: 4 22: 29
42 11: 17 1: 7 21: 27
43 22: 31 32: 40 1: 3
44 12: 21 22: 29 1: 3
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 10: 20 14: 17 4: 9
48 12: 19 30: 34 22: 27
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 11: 21 30: 33 5: 9
52 1: 10 13: 21 10: 12
53 21: 30 11: 21 1: 3
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 10: 20 18: 21 4: 9
58 22: 30 37: 40 12: 17
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 31: 40 11: 21 1: 3
62 28: 40 11: 16 35: 40
63 10: 17 14: 17 32: 40
64 10: 17 13: 21 18: 20
65 1: 9 8: 13 33: 40
66 1: 9 14: 21 1: 4
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 1: 11 22: 25 4: 9
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 18: 25 1: 5 22: 29
75 1: 11 26: 29 4: 9
76 11: 19 22: 29 18: 20
77 18: 27 11: 16 34: 40
78 18: 27 17: 21 34: 40
79 10: 17 18: 21 32: 40
80 13: 21 22: 29 10: 12
81 10: 17 1: 13 28: 31
82 1: 9 13: 17 21: 27
83 22: 30 22: 26 4: 8
84 11: 20 13: 21 10: 12
85 1: 8 1: 13 1: 4
86 28: 40 33: 40 18: 20
87 10: 20 14: 21 1: 3
88 10: 17 18: 21 21: 27
89 18: 28 1: 4 34: 40
90 1: 11 22: 29 1: 3
91 22: 31 37: 40 4: 8
92 18: 27 11: 21 30: 33
93 1: 10 22: 29 28: 32
94 31: 40 22: 31 1: 3
95 1: 9 18: 21 33: 40
96 33: 40 6: 10 4: 8
97 21: 31 10: 15 12: 17
98 31: 40 32: 36 12: 17
99 31: 40 22: 26 4: 8
100 1: 12 22: 29 10: 12
101 12: 21 35: 40 13: 17
102 1: 12 22: 25 13: 17
103 20: 28 22: 32 18: 20
104 29: 40 22: 26 21: 29
105 31: 40 1: 5 12: 17
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 18: 25 10: 13 22: 29
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 31: 40 11: 16 4: 8
115 22: 30 27: 31 4: 8
116 22: 30 22: 26 12: 17
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 18: 25 6: 9 22: 29
123 33: 40 1: 5 4: 8
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 29: 40 22: 32 18: 20
130 31: 40 27: 31 4: 8
131 22: 30 22: 31 9: 11
132 31: 40 22: 31 9: 11
133 12: 21 22: 26 4: 9
134 22: 30 27: 31 12: 17
135 1: 10 22: 29 18: 20
136 29: 40 27: 32 21: 29
137 20: 28 28: 32 21: 29
138 31: 40 22: 26 12: 17
139 10: 17 14: 21 28: 31
140 1: 10 18: 21 13: 17
141 20: 30 22: 27 35: 40
142 1: 10 30: 35 5: 9
143 31: 40 28: 31 34: 40
144 11: 20 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 11: 17 1: 12 18: 20
147 22: 31 32: 36 4: 8
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 11: 19 22: 24 21: 27
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 12: 21 27: 29 4: 9
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 13: 21 26: 29 13: 17
161 1: 10 30: 40 1: 4
162 32: 40 36: 40 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 32: 36 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 13: 21 22: 25 13: 17
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 32: 40 32: 35 4: 8
177 21: 31 10: 21 9: 11
178 1: 9 18: 21 21: 27
179 1: 10 36: 40 5: 9
180 12: 21 30: 40 10: 12
181 1: 11 35: 40 13: 17
182 1: 10 8: 12 13: 17
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 1: 9 18: 21 5: 9
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 17: 21 35: 40
190 20: 29 36: 40 34: 40
191 12: 21 30: 34 13: 17
192 1: 9 14: 17 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10672
stepf: Fermi-Dirac step function
siesta: Program's energy decomposition (eV):
siesta: Ebs = -3030.299749
siesta: Eions = 26107.343322
siesta: Ena = 6263.878119
siesta: Ekin = 11718.516092
siesta: Enl = -1970.600674
siesta: Eso = 0.000000
siesta: Edftu = 0.000000
siesta: DEna = -1201.096509
siesta: DUscf = 259.946627
siesta: DUext = 0.000000
siesta: Exc = -3820.235643
siesta: eta*DQ = 0.000000
siesta: Emadel = 0.000000
siesta: Emeta = 0.000000
siesta: Emolmec = 0.000000
siesta: Ekinion = 0.000000
siesta: Eharris = -14681.609818
siesta: Etot = -14856.935310
siesta: FreeEng = -14856.935310
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14681.609818 -14856.935310 -14856.935310 0.935352 -7.798496 12.748041
timer: Routine,Calls,Time,% = IterSCF 1 0.540 41.56
scf: 2 -14898.497668 -14878.090344 -14878.090344 0.076816 -7.732132 10.791097
scf: 3 -14956.860393 -14929.014222 -14929.014222 0.396114 -2.483567 1.348041
scf: 4 -14926.981710 -14928.296548 -14928.296548 0.065840 -2.608182 1.702039
scf: 5 -14929.866514 -14929.320384 -14929.320384 0.070228 -2.969071 0.330367
scf: 6 -14929.333162 -14929.328193 -14929.328193 0.004327 -2.990444 0.232407
scf: 7 -14929.338987 -14929.333918 -14929.333918 0.002492 -3.044896 0.185815
scf: 8 -14929.344729 -14929.339898 -14929.339898 0.003468 -3.080125 0.140955
scf: 9 -14929.342928 -14929.341723 -14929.341723 0.002483 -3.084648 0.126544
scf: 10 -14929.343791 -14929.342870 -14929.342870 0.001447 -3.070988 0.095554
scf: 11 -14929.344556 -14929.343748 -14929.343748 0.001188 -3.061581 0.063948
scf: 12 -14929.344611 -14929.344263 -14929.344263 0.001118 -3.057237 0.033991
scf: 13 -14929.344311 -14929.344298 -14929.344298 0.000385 -3.060557 0.028357
scf: 14 -14929.344442 -14929.344374 -14929.344374 0.000312 -3.068087 0.020200
scf: 15 -14929.344493 -14929.344440 -14929.344440 0.000380 -3.070907 0.016974
scf: 16 -14929.344486 -14929.344468 -14929.344468 0.000334 -3.071065 0.014665
scf: 17 -14929.344498 -14929.344484 -14929.344484 0.000149 -3.069524 0.011068
scf: 18 -14929.344507 -14929.344496 -14929.344496 0.000142 -3.068307 0.007183
scf: 19 -14929.344501 -14929.344500 -14929.344500 0.000108 -3.068069 0.005326
scf: 20 -14929.344498 -14929.344499 -14929.344499 0.000052 -3.068608 0.004478
scf: 21 -14929.344501 -14929.344500 -14929.344500 0.000041 -3.069645 0.003149
scf: 22 -14929.344503 -14929.344502 -14929.344502 0.000051 -3.069970 0.002497
scf: 23 -14929.344503 -14929.344502 -14929.344502 0.000053 -3.069956 0.001979
scf: 24 -14929.344503 -14929.344503 -14929.344503 0.000014 -3.069774 0.001593
scf: 25 -14929.344503 -14929.344503 -14929.344503 0.000021 -3.069565 0.001034
scf: 26 -14929.344503 -14929.344503 -14929.344503 0.000015 -3.069551 0.000974
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000148174
max |H_out - H_in| (eV) : 0.0009742130
SCF cycle converged after 26 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14929.3445
siesta: E_KS - E_eggbox = -14929.3445
siesta: Atomic forces (eV/Ang):
1 4.120328 1.466594 1.461570
2 -3.151794 1.396634 0.700694
3 -0.888701 -3.296584 -3.165341
4 -0.549147 -4.590305 -3.617973
5 2.783646 3.420487 -0.484345
6 -1.959230 1.343633 3.649164
7 1.439224 -1.873340 -3.448136
8 3.424127 -1.045890 3.383822
9 -2.735335 2.162249 1.746811
10 -2.067392 -5.097054 -2.512351
11 0.545605 2.315813 -2.938608
12 2.435273 0.617048 5.081177
13 2.198756 -4.320491 0.844487
14 0.788279 3.091999 -2.545884
15 -3.657914 1.595719 2.758983
16 4.759773 -0.550691 0.367147
17 -0.009446 0.103745 3.593810
18 -2.723155 -0.923913 -3.506548
19 2.817540 2.831535 -3.959053
20 1.058060 -0.026046 5.123383
21 -4.288578 -2.806210 -1.208530
22 0.166923 -4.183021 -4.178035
23 -0.467497 0.886580 4.458941
24 0.151103 4.264323 -0.915469
25 2.349552 3.732001 -0.111822
26 1.738675 -4.422649 -0.048092
27 -3.483253 -0.608731 1.279866
28 -1.312161 4.577072 2.876442
29 -1.263732 0.160325 -3.804202
30 2.733087 -3.516065 1.739663
31 0.656649 -1.728102 -0.638073
32 -3.904035 -0.593068 2.074838
33 -0.228751 3.118664 -2.628882
34 1.342482 3.071178 -3.681499
35 1.843936 -3.031021 3.411287
36 -3.370331 1.679181 1.645570
37 -1.174799 2.028239 -5.049503
38 -0.547531 -0.707893 3.964896
39 3.710522 -1.877154 -0.702316
40 -2.401092 -4.617564 -0.051786
41 0.452414 3.464677 -4.215024
42 1.827122 0.960278 3.812153
43 1.655323 0.890168 -4.770598
44 -0.027050 -3.214970 2.141716
45 -1.717970 2.947701 2.400592
46 -1.823547 -2.404671 2.857493
47 3.211561 -1.551530 -3.330298
48 -0.859579 3.914140 -0.393251
49 0.616534 -1.208289 -4.363101
50 -1.197853 4.634863 1.913610
51 -0.332449 -3.003192 3.592587
52 -0.381715 3.647853 -3.916927
53 1.098139 0.611625 4.234525
54 -1.292626 -4.998223 -0.271540
55 -3.763201 3.032304 -2.163013
56 4.298695 1.617986 0.175014
57 -0.417076 -4.860742 1.933453
58 -3.473671 3.732556 0.813627
59 -2.438609 -3.298208 -0.459938
60 3.777030 0.087770 -2.790021
61 3.901815 2.339246 3.629956
62 -3.353821 -1.747260 -3.214809
63 -4.643038 2.400515 -0.702675
64 3.557255 -4.435350 1.802115
65 2.269657 2.561658 0.405286
66 -3.852664 0.969032 0.193458
67 3.151993 2.951194 1.509023
68 -3.224611 -1.457756 1.841959
69 -0.174156 -0.613456 -4.519936
70 3.739397 2.403721 -4.023397
71 0.804213 -0.228496 3.328165
72 -3.463745 -1.751310 -1.680605
73 -5.319881 3.468598 -2.347559
74 2.355138 -0.558568 -3.560936
75 1.007215 5.916386 1.772057
76 4.638311 -2.031588 -2.923773
77 -4.566309 2.173469 -1.095851
78 -0.155835 -0.533469 4.377095
79 -4.411180 -0.512914 2.290600
80 4.326802 -5.233830 -0.846697
81 2.025194 -4.112073 2.669654
82 -3.052861 -3.179341 2.434568
83 -0.519814 3.706497 0.257625
84 4.429998 -1.576169 -0.302050
85 -5.506988 0.318781 -3.709798
86 2.382552 -3.821797 -0.341299
87 0.070697 1.843884 2.406745
88 1.679607 -4.195024 3.509175
89 2.031584 4.044177 -0.686930
90 -3.802166 0.090546 -2.508410
91 -1.157735 1.377037 -4.349059
92 2.808640 -3.783695 1.915183
93 -1.783390 2.265358 2.564841
94 2.425229 5.915374 -0.258748
95 1.892472 -2.410182 -2.884745
96 -0.624553 -1.530170 4.868751
----------------------------------------
Tot -0.023841 0.082346 -0.013857
----------------------------------------
Max 5.916386
Res 2.790182 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 5.916386 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -194.37 -191.88 -212.48 14.20 3.10 24.19
(Free)E + p*V (eV/cell) -14809.7561
Target enthalpy (eV/cell) -14929.3445
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.929 1.859 1.685 1.759 1.625
4 6.951 1.863 1.693 1.715 1.679
7 6.926 1.862 1.819 1.717 1.527
10 6.929 1.855 1.652 1.515 1.907
13 6.934 1.848 1.718 1.651 1.717
16 6.804 1.868 1.769 1.520 1.647
19 6.977 1.850 1.870 1.583 1.674
22 6.977 1.854 1.587 1.541 1.995
25 6.909 1.866 1.654 1.927 1.462
28 6.923 1.855 1.703 1.500 1.864
31 6.867 1.859 1.625 1.678 1.705
34 6.900 1.861 1.668 1.789 1.583
37 6.965 1.838 1.881 1.577 1.669
40 6.967 1.856 1.780 1.460 1.871
43 6.911 1.849 1.425 1.711 1.926
46 6.898 1.878 1.518 1.727 1.775
49 6.932 1.865 1.434 1.688 1.946
52 6.945 1.851 1.594 1.570 1.929
55 6.962 1.873 1.624 1.877 1.589
58 6.910 1.858 1.641 1.811 1.601
61 6.904 1.851 1.508 1.882 1.664
64 6.940 1.855 1.672 1.989 1.424
67 6.905 1.879 1.944 1.431 1.652
70 6.869 1.867 1.891 1.449 1.661
73 6.817 1.864 1.893 1.358 1.702
76 6.963 1.840 1.858 1.525 1.740
79 6.834 1.858 1.621 1.673 1.682
82 6.850 1.872 1.594 1.807 1.577
85 6.854 1.852 1.588 1.635 1.778
88 6.988 1.851 1.706 1.882 1.550
91 6.935 1.855 1.562 1.694 1.823
94 6.898 1.861 1.680 1.491 1.866
Species: H_lyp
Atom Qatom Qorb
1s
2 0.566 0.566
3 0.471 0.471
5 0.537 0.537
6 0.508 0.508
8 0.540 0.540
9 0.546 0.546
11 0.557 0.557
12 0.527 0.527
14 0.552 0.552
15 0.479 0.479
17 0.571 0.571
18 0.601 0.601
20 0.523 0.523
21 0.494 0.494
23 0.550 0.550
24 0.524 0.524
26 0.501 0.501
27 0.569 0.569
29 0.552 0.552
30 0.503 0.503
32 0.548 0.548
33 0.605 0.605
35 0.553 0.553
36 0.520 0.520
38 0.508 0.508
39 0.535 0.535
41 0.508 0.508
42 0.540 0.540
44 0.540 0.540
45 0.565 0.565
47 0.533 0.533
48 0.551 0.551
50 0.521 0.521
51 0.521 0.521
53 0.521 0.521
54 0.496 0.496
56 0.537 0.537
57 0.509 0.509
59 0.584 0.584
60 0.532 0.532
62 0.613 0.613
63 0.461 0.461
65 0.579 0.579
66 0.540 0.540
68 0.544 0.544
69 0.558 0.558
71 0.580 0.580
72 0.561 0.561
74 0.609 0.609
75 0.609 0.609
77 0.501 0.501
78 0.504 0.504
80 0.665 0.665
81 0.490 0.490
83 0.602 0.602
84 0.554 0.554
86 0.569 0.569
87 0.566 0.566
89 0.512 0.512
90 0.533 0.533
92 0.515 0.515
93 0.562 0.562
95 0.553 0.553
96 0.549 0.549
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 1
====================================
outcoor: Atomic coordinates (Ang):
0.19920946 3.68327802 6.47326679 1 1 O_lyp
-0.63704466 4.11312165 6.86156614 2 2 H_lyp
-0.09198636 2.94263172 5.83292506 2 3 H_lyp
1.48877259 7.01974009 7.16191337 1 4 O_lyp
2.06622180 7.81764522 6.91891743 2 5 H_lyp
0.88562087 7.29300319 7.93815635 2 6 H_lyp
6.85321685 0.25581285 6.64229298 1 7 O_lyp
7.54765336 0.09766230 7.35756327 2 8 H_lyp
6.11388618 0.83483290 7.03390435 2 9 H_lyp
6.05537912 9.62860744 1.22438458 1 10 O_lyp
6.13121950 10.48517614 0.68343184 2 11 H_lyp
6.52544314 9.77137918 2.12135708 2 12 H_lyp
5.98491450 7.28034315 2.70188754 1 13 O_lyp
6.22176190 7.98691101 2.01430963 2 14 H_lyp
5.19182410 7.62356663 3.24616668 2 15 H_lyp
0.06063870 4.09876913 2.56082062 1 16 O_lyp
-0.72002111 4.44023188 3.10803262 2 17 H_lyp
-0.29608660 3.58793494 1.76216242 2 18 H_lyp
0.55629756 7.01632884 4.28115101 1 19 O_lyp
0.81236490 6.96994178 5.26145141 2 20 H_lyp
-0.30958552 6.49372776 4.14729878 2 21 H_lyp
5.50037309 1.95065042 8.84066156 1 22 O_lyp
5.44895508 1.91198162 9.85996630 2 23 H_lyp
5.52033774 2.92953130 8.55795381 2 24 H_lyp
3.82525155 7.00834150 4.79975006 1 25 O_lyp
4.27388616 6.09011482 4.76989251 2 26 H_lyp
2.87221449 6.88863941 5.13286066 2 27 H_lyp
9.21706715 5.04023034 8.99642921 1 28 O_lyp
8.96717540 4.94035835 8.02149713 2 29 H_lyp
9.70610880 4.20214115 9.30388837 2 30 H_lyp
5.39146769 0.63613747 5.11857383 1 31 O_lyp
4.57127399 0.64867442 5.70463753 2 32 H_lyp
5.41948871 1.47697061 4.56412412 2 33 H_lyp
5.61300062 2.22686447 1.60177138 1 34 O_lyp
5.99412143 1.37322528 1.98762466 2 35 H_lyp
4.72246688 2.41375318 2.05367806 2 36 H_lyp
7.04737418 0.64453337 3.66871372 1 37 O_lyp
6.90877620 0.70841777 4.67886205 2 38 H_lyp
7.89829349 0.12580432 3.49843024 2 39 H_lyp
5.65463326 5.35967916 8.64988425 1 40 O_lyp
5.78101120 6.03774399 7.90057889 2 41 H_lyp
6.12408385 5.71214634 9.48852065 2 42 H_lyp
2.23369986 5.25198964 2.73933711 1 43 O_lyp
2.35993954 4.40281413 3.29478701 2 44 H_lyp
1.93616012 5.99658849 3.35536563 2 45 H_lyp
7.31592414 6.33462525 0.78638686 1 46 O_lyp
7.91717825 6.07653213 0.01255636 2 47 H_lyp
7.03807873 7.30874860 0.66912103 2 48 H_lyp
3.07137803 0.62729932 6.17024791 1 49 O_lyp
2.95732265 1.58035951 6.51427716 2 50 H_lyp
3.01925693 -0.00671252 6.95802989 2 51 H_lyp
0.36914682 7.66815342 9.65124517 1 52 O_lyp
0.52245448 7.87136706 10.62946470 2 53 H_lyp
0.06711082 6.69882834 9.56939307 2 54 H_lyp
3.18158877 8.10677758 9.48516539 1 55 O_lyp
4.12960813 8.46361640 9.54039118 2 56 H_lyp
3.12906778 7.23913562 10.01432151 2 57 H_lyp
3.38223590 5.09834274 0.20181856 1 58 O_lyp
2.86454940 4.25262809 0.02897198 2 59 H_lyp
4.16844214 5.14019618 -0.44623605 2 60 H_lyp
8.15872105 5.72522851 3.25811341 1 61 O_lyp
8.21250378 4.82609465 2.78281449 2 62 H_lyp
7.19962222 6.06536546 3.16842943 2 63 H_lyp
4.73795092 4.99008643 1.91402796 1 64 O_lyp
5.34507297 5.80572563 1.95090587 2 65 H_lyp
3.77138881 5.31216591 1.98043240 2 66 H_lyp
3.16704510 8.55659629 3.09337286 1 67 O_lyp
2.29279258 8.23674173 3.51411701 2 68 H_lyp
3.11961074 8.40862885 2.08989737 2 69 H_lyp
0.83835803 2.72537262 0.35100720 1 70 O_lyp
0.78179752 2.70948928 1.36743887 2 71 H_lyp
-0.00774191 2.30608560 -0.02375637 2 72 H_lyp
9.01810939 0.86775276 1.32475291 1 73 O_lyp
9.54526403 0.86875153 0.46204086 2 74 H_lyp
9.59225125 0.45322388 2.04396077 2 75 H_lyp
2.64036721 3.25545914 7.19346499 1 76 O_lyp
1.82979372 3.77485798 6.85755063 2 77 H_lyp
2.53965169 3.10880763 8.18978336 2 78 H_lyp
9.15014045 9.09885357 2.91511978 1 79 O_lyp
9.79967095 9.46830172 2.22810753 2 80 H_lyp
9.56452657 8.26080899 3.30596702 2 81 H_lyp
0.71317647 1.65289377 3.18544157 1 82 O_lyp
0.54883815 2.49828449 2.64057583 2 83 H_lyp
1.62990161 1.28647706 2.95932488 2 84 H_lyp
2.37769118 3.25071252 4.48170813 1 85 O_lyp
3.04532531 2.50145780 4.37923715 2 86 H_lyp
2.59015802 3.75412131 5.33537938 2 87 H_lyp
5.94375414 7.44062359 6.52784345 1 88 O_lyp
6.44454085 8.30903925 6.32846462 2 89 H_lyp
5.05150168 7.47020238 6.03439338 2 90 H_lyp
8.58741232 9.56307785 8.60027930 1 91 O_lyp
9.13627767 8.86154296 9.09428068 2 92 H_lyp
8.26601390 10.25506336 9.27573275 2 93 H_lyp
4.28542070 4.25322161 5.19942166 1 94 O_lyp
4.58422992 3.51461294 4.57355223 2 95 H_lyp
3.88860404 3.83657988 6.04088228 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 1
<sparsity:sparsity for geom step 1
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 7>
<dData1D:(new from dSpData1D) n=126, refcount: 1>
refcount: 1>
new_DM -- step: 2
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 1
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 9>
<dData2D:(temp array for extrapolation) n=126 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 11: 20 13: 17 13: 17
4 11: 20 1: 12 10: 12
5 21: 32 1: 10 1: 3
6 1: 9 14: 17 33: 40
7 11: 17 8: 12 21: 27
8 1: 10 1: 8 21: 27
9 11: 20 1: 7 13: 17
10 1: 10 9: 12 21: 27
11 22: 30 32: 40 9: 11
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 31: 40 1: 9 9: 11
16 32: 40 32: 40 1: 3
17 26: 40 1: 9 18: 21
18 21: 32 5: 10 4: 8
19 1: 8 1: 7 5: 9
20 21: 32 1: 4 4: 8
21 33: 40 1: 10 1: 3
22 18: 25 1: 9 18: 21
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 11: 17 1: 7 21: 27
26 11: 20 13: 21 10: 12
27 1: 9 1: 13 28: 32
28 31: 40 6: 9 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 21: 30 1: 4 12: 17
33 9: 20 1: 8 5: 9
34 1: 8 8: 13 5: 9
35 9: 20 9: 13 5: 9
36 1: 10 1: 12 10: 12
37 21: 30 1: 9 9: 11
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 26: 40 1: 4 22: 29
42 31: 40 11: 21 1: 3
43 32: 40 10: 14 12: 17
44 1: 12 22: 25 13: 17
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 31 32: 40 1: 3
48 12: 21 22: 29 1: 3
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 12: 19 30: 34 22: 27
52 1: 10 13: 21 10: 12
53 21: 30 11: 21 1: 3
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 1: 11 26: 29 4: 9
58 11: 21 30: 33 5: 9
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 18: 25 1: 5 22: 29
62 28: 40 11: 16 35: 40
63 10: 17 14: 17 32: 40
64 22: 30 37: 40 12: 17
65 1: 9 8: 13 33: 40
66 1: 9 14: 21 1: 4
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 1: 11 22: 25 4: 9
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 1: 9 13: 17 21: 27
75 1: 11 22: 29 1: 3
76 10: 17 13: 21 18: 20
77 18: 27 11: 16 34: 40
78 18: 27 17: 21 34: 40
79 10: 17 18: 21 32: 40
80 13: 21 22: 29 10: 12
81 10: 17 1: 13 28: 31
82 28: 40 33: 40 18: 20
83 22: 30 22: 26 4: 8
84 22: 30 22: 26 12: 17
85 1: 8 1: 13 1: 4
86 18: 28 1: 4 34: 40
87 10: 20 18: 21 4: 9
88 10: 17 18: 21 21: 27
89 21: 30 5: 9 12: 17
90 10: 20 14: 17 4: 9
91 22: 31 37: 40 4: 8
92 18: 27 11: 21 30: 33
93 1: 10 22: 29 28: 32
94 31: 40 11: 16 4: 8
95 1: 9 18: 21 33: 40
96 33: 40 6: 10 4: 8
97 21: 31 10: 15 12: 17
98 31: 40 32: 36 12: 17
99 31: 40 22: 26 4: 8
100 1: 12 22: 29 10: 12
101 12: 21 35: 40 13: 17
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 26 21: 29
105 31: 40 1: 5 12: 17
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 10: 20 14: 21 1: 3
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 1: 10 1: 6 13: 17
115 22: 30 27: 31 4: 8
116 22: 30 22: 31 9: 11
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 18: 25 6: 9 22: 29
123 33: 40 1: 5 4: 8
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 29: 40 22: 32 18: 20
130 1: 10 7: 12 13: 17
131 31: 40 27: 31 4: 8
132 22: 30 27: 31 12: 17
133 1: 10 30: 35 5: 9
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 27: 32 21: 29
137 20: 28 28: 32 21: 29
138 12: 21 22: 26 4: 9
139 10: 17 14: 21 28: 31
140 1: 10 18: 21 13: 17
141 20: 30 22: 27 35: 40
142 31: 40 22: 31 9: 11
143 31: 40 28: 31 34: 40
144 11: 20 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 18: 25 10: 13 22: 29
147 22: 31 32: 36 4: 8
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 11: 19 22: 24 21: 27
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 12: 21 27: 29 4: 9
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 13: 21 26: 29 13: 17
161 1: 10 30: 40 1: 4
162 32: 40 36: 40 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 32: 36 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 13: 21 22: 25 13: 17
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 32: 40 32: 35 4: 8
177 21: 31 10: 21 9: 11
178 1: 9 18: 21 21: 27
179 1: 10 36: 40 5: 9
180 12: 21 30: 40 10: 12
181 1: 11 35: 40 13: 17
182 11: 17 1: 12 18: 20
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 1: 9 18: 21 5: 9
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 17: 21 35: 40
190 20: 29 36: 40 34: 40
191 12: 21 30: 34 13: 17
192 1: 9 14: 17 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10674
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14937.879468 -14933.883154 -14933.883154 0.031335 -3.458309 0.310713
scf: 2 -14933.842838 -14933.890063 -14933.890063 0.021578 -3.528363 0.317874
scf: 3 -14933.928789 -14933.915605 -14933.915605 0.010296 -3.495541 0.025215
scf: 4 -14933.916062 -14933.915894 -14933.915894 0.001339 -3.502695 0.010564
scf: 5 -14933.915911 -14933.915903 -14933.915903 0.000116 -3.502946 0.009177
scf: 6 -14933.915912 -14933.915909 -14933.915909 0.000184 -3.503425 0.006174
scf: 7 -14933.915927 -14933.915920 -14933.915920 0.000158 -3.503385 0.003510
scf: 8 -14933.915922 -14933.915921 -14933.915921 0.000030 -3.503222 0.002830
scf: 9 -14933.915925 -14933.915924 -14933.915924 0.000125 -3.502468 0.000481
scf: 10 -14933.915924 -14933.915924 -14933.915924 0.000003 -3.502457 0.000377
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000032160
max |H_out - H_in| (eV) : 0.0003766754
SCF cycle converged after 10 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14933.9159
siesta: Atomic forces (eV/Ang):
1 3.321350 1.076436 1.116297
2 -2.637524 1.105880 0.436191
3 -0.635206 -2.624957 -2.576344
4 -0.589386 -3.694720 -3.191820
5 2.262590 2.725493 -0.236375
6 -1.387252 1.131653 2.942811
7 1.324251 -1.511182 -2.671668
8 2.896321 -0.923511 2.871953
9 -2.085062 1.665097 1.459882
10 -1.571376 -4.355839 -2.011460
11 0.509600 1.697284 -2.500495
12 1.947949 0.542747 4.177540
13 1.730918 -3.455811 0.788645
14 0.569992 2.519509 -1.973544
15 -2.987052 1.313686 2.280198
16 4.071892 -0.661111 0.149366
17 0.287248 -0.033725 3.258387
18 -2.535550 -0.575789 -2.976935
19 2.270046 2.309356 -3.145522
20 0.768380 0.012844 4.171683
21 -3.454923 -2.313395 -1.056372
22 0.124957 -3.446250 -3.529044
23 -0.420742 0.952216 3.514800
24 0.140586 3.467238 -0.647539
25 2.023336 2.968830 0.118647
26 1.362727 -3.727545 -0.014366
27 -2.770353 -0.547205 1.032583
28 -1.047622 3.727039 2.392496
29 -1.046469 0.222861 -2.990308
30 2.273860 -2.730709 1.425992
31 0.206493 -1.238300 -0.694486
32 -3.396337 -0.569187 1.709787
33 -0.279331 2.611409 -2.256216
34 1.087092 2.429332 -3.022179
35 1.486391 -2.267122 3.056641
36 -2.724041 1.514746 1.324001
37 -0.787133 1.806919 -4.266720
38 -0.446123 -0.781036 3.038621
39 3.170272 -1.548621 -0.573546
40 -1.944616 -3.717865 -0.195287
41 0.341141 2.820458 -3.436937
42 1.485316 0.722010 3.166398
43 1.511436 0.891723 -3.884711
44 -0.119417 -2.550238 1.723711
45 -1.480030 2.321416 1.917584
46 -1.483370 -2.001573 2.099581
47 2.659781 -1.289388 -2.640883
48 -0.644003 3.251460 -0.353261
49 0.420489 -0.980202 -3.410574
50 -1.097339 3.796636 1.662437
51 -0.282260 -2.394568 2.916397
52 -0.528117 2.959898 -3.103363
53 0.960029 0.394492 3.339315
54 -1.016978 -4.103428 -0.172988
55 -3.071211 2.495757 -1.608030
56 3.499892 1.271656 0.158440
57 -0.308654 -3.987762 1.384792
58 -3.165872 3.276642 0.194167
59 -2.041900 -2.734835 -0.343053
60 3.123274 0.022209 -2.244913
61 3.107767 1.996282 3.241207
62 -3.257048 -1.223446 -2.900784
63 -3.783564 2.127680 -0.620924
64 2.926804 -3.771941 1.828223
65 1.907789 2.137184 0.359733
66 -2.918377 0.671731 0.142998
67 2.465074 2.641399 1.072562
68 -2.545153 -1.224764 1.469454
69 -0.177685 -0.519954 -3.739308
70 3.077034 2.107342 -3.541533
71 0.823159 -0.239035 2.483857
72 -2.826219 -1.455247 -1.331969
73 -4.689375 3.124652 -2.342193
74 2.086884 -0.590528 -3.072217
75 0.814370 5.523332 1.655224
76 3.782777 -1.675200 -2.364891
77 -3.775539 1.656275 -0.740795
78 -0.080972 -0.384867 3.500170
79 -3.681094 -0.698308 1.938238
80 3.741598 -4.805678 -0.663284
81 1.770736 -3.575415 2.453346
82 -2.457413 -2.980092 1.888128
83 -0.382228 3.163509 0.637967
84 3.685037 -1.244959 -0.137450
85 -4.634176 0.021059 -3.110458
86 1.787680 -3.078165 -0.211369
87 0.001384 1.473008 1.744890
88 1.357768 -3.443339 2.935744
89 1.562218 3.290875 -0.499582
90 -3.005816 0.083868 -2.079031
91 -0.770585 1.099188 -3.466467
92 2.240728 -3.059691 1.436045
93 -1.575569 1.822913 2.194134
94 2.208337 4.851542 -0.088588
95 1.592528 -1.792862 -2.316864
96 -0.279992 -1.177710 4.075029
----------------------------------------
Tot -0.048775 0.109695 -0.070354
----------------------------------------
Max 5.523332
Res 2.310987 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 5.523332 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -170.39 -164.02 -182.93 11.93 0.92 20.94
(Free)E + p*V (eV/cell) -14830.5846
Target enthalpy (eV/cell) -14933.9159
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.918 1.865 1.684 1.758 1.611
4 6.940 1.871 1.682 1.710 1.677
7 6.917 1.868 1.815 1.708 1.526
10 6.920 1.862 1.641 1.512 1.905
13 6.924 1.854 1.707 1.650 1.713
16 6.796 1.875 1.766 1.516 1.639
19 6.966 1.857 1.864 1.575 1.670
22 6.968 1.862 1.574 1.536 1.995
25 6.899 1.873 1.645 1.925 1.456
28 6.911 1.861 1.695 1.493 1.862
31 6.859 1.863 1.618 1.677 1.701
34 6.889 1.868 1.666 1.777 1.579
37 6.957 1.844 1.878 1.572 1.663
40 6.957 1.862 1.772 1.459 1.864
43 6.901 1.856 1.424 1.699 1.922
46 6.888 1.884 1.511 1.721 1.772
49 6.920 1.872 1.433 1.675 1.941
52 6.932 1.858 1.588 1.561 1.926
55 6.951 1.881 1.619 1.874 1.578
58 6.902 1.864 1.629 1.809 1.599
61 6.895 1.858 1.502 1.875 1.659
64 6.934 1.862 1.660 1.989 1.424
67 6.894 1.886 1.940 1.424 1.644
70 6.860 1.875 1.887 1.446 1.652
73 6.814 1.872 1.896 1.355 1.691
76 6.952 1.847 1.854 1.518 1.732
79 6.828 1.865 1.622 1.670 1.670
82 6.840 1.879 1.590 1.804 1.568
85 6.843 1.861 1.584 1.629 1.768
88 6.980 1.858 1.698 1.876 1.548
91 6.926 1.861 1.562 1.681 1.822
94 6.887 1.869 1.664 1.489 1.864
Species: H_lyp
Atom Qatom Qorb
1s
2 0.570 0.570
3 0.474 0.474
5 0.543 0.543
6 0.513 0.513
8 0.545 0.545
9 0.550 0.550
11 0.562 0.562
12 0.534 0.534
14 0.556 0.556
15 0.482 0.482
17 0.574 0.574
18 0.606 0.606
20 0.529 0.529
21 0.499 0.499
23 0.556 0.556
24 0.531 0.531
26 0.505 0.505
27 0.575 0.575
29 0.558 0.558
30 0.507 0.507
32 0.551 0.551
33 0.610 0.610
35 0.557 0.557
36 0.525 0.525
38 0.511 0.511
39 0.538 0.538
41 0.513 0.513
42 0.545 0.545
44 0.545 0.545
45 0.571 0.571
47 0.538 0.538
48 0.556 0.556
50 0.526 0.526
51 0.527 0.527
53 0.525 0.525
54 0.500 0.500
56 0.543 0.543
57 0.515 0.515
59 0.591 0.591
60 0.536 0.536
62 0.615 0.615
63 0.464 0.464
65 0.584 0.584
66 0.545 0.545
68 0.549 0.549
69 0.564 0.564
71 0.585 0.585
72 0.566 0.566
74 0.615 0.615
75 0.608 0.608
77 0.505 0.505
78 0.508 0.508
80 0.667 0.667
81 0.495 0.495
83 0.607 0.607
84 0.559 0.559
86 0.574 0.574
87 0.570 0.570
89 0.518 0.518
90 0.539 0.539
92 0.520 0.520
93 0.567 0.567
95 0.559 0.559
96 0.554 0.554
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 2
====================================
outcoor: Atomic coordinates (Ang):
0.21394459 3.68852286 6.47849367 1 1 O_lyp
-0.64831612 4.11811630 6.86407196 2 2 H_lyp
-0.09516454 2.93084246 5.82160516 2 3 H_lyp
1.48680873 7.00332422 7.14897476 1 4 O_lyp
2.07617669 7.82987758 6.91718531 2 5 H_lyp
0.87861427 7.29780829 7.95120650 2 6 H_lyp
6.85836381 0.24911340 6.62996175 1 7 O_lyp
7.55989873 0.09392199 7.36966451 2 8 H_lyp
6.10410406 0.84256555 7.04015130 2 9 H_lyp
6.04798570 9.61037934 1.21539990 1 10 O_lyp
6.13317069 10.49345795 0.67292278 2 11 H_lyp
6.53415217 9.77358587 2.13952840 2 12 H_lyp
5.99277769 7.26489220 2.70490759 1 13 O_lyp
6.22458095 7.99796862 2.00520503 2 14 H_lyp
5.17874266 7.62927325 3.25603336 2 15 H_lyp
0.07766061 4.09679975 2.56213361 1 16 O_lyp
-0.72005489 4.44060290 3.12088482 2 17 H_lyp
-0.30582515 3.58463084 1.74962229 2 18 H_lyp
0.56637366 7.02645498 4.26699263 1 19 O_lyp
0.81614874 6.96984864 5.27977367 2 20 H_lyp
-0.32492235 6.48369218 4.14297684 2 21 H_lyp
5.50097004 1.93569109 8.82572006 1 22 O_lyp
5.44728322 1.91515221 9.87591238 2 23 H_lyp
5.52087811 2.94478139 8.55467991 2 24 H_lyp
3.83365402 7.02168789 4.79935016 1 25 O_lyp
4.28010401 6.07429853 4.76972052 2 26 H_lyp
2.85975767 6.88646246 5.13743772 2 27 H_lyp
9.21237460 5.05659888 9.00671596 1 28 O_lyp
8.96265604 4.94093170 8.00789253 2 29 H_lyp
9.71588287 4.18956699 9.31010975 2 30 H_lyp
5.39381600 0.62995743 5.11629195 1 31 O_lyp
4.55731236 0.64655348 5.71205757 2 32 H_lyp
5.41867065 1.48812359 4.55472270 2 33 H_lyp
5.61780161 2.23784763 1.58860560 1 34 O_lyp
6.00071572 1.36238573 1.99982412 2 35 H_lyp
4.71041389 2.41975827 2.05956295 2 36 H_lyp
7.04317286 0.65178677 3.65065567 1 37 O_lyp
6.90681812 0.70588620 4.69304132 2 38 H_lyp
7.91156307 0.11909124 3.49591861 2 39 H_lyp
5.64604646 5.34316581 8.64969905 1 40 O_lyp
5.78262913 6.05013438 7.88550510 2 41 H_lyp
6.13061801 5.71558049 9.50215368 2 42 H_lyp
2.23961963 5.25517306 2.72227648 1 43 O_lyp
2.35984281 4.39131675 3.30244622 2 44 H_lyp
1.93001631 6.00713007 3.36395063 2 45 H_lyp
7.30940277 6.32602566 0.79660583 1 46 O_lyp
7.92866344 6.07098355 0.00064654 2 47 H_lyp
7.03500470 7.32274636 0.66771469 2 48 H_lyp
3.07358288 0.62297823 6.15464458 1 49 O_lyp
2.95303888 1.59693472 6.52112062 2 50 H_lyp
3.01806803 -0.01745254 6.97087771 2 51 H_lyp
0.36778173 7.68119888 9.63723744 1 52 O_lyp
0.52638165 7.87355436 10.64460823 2 53 H_lyp
0.06248813 6.68095368 9.56842199 2 54 H_lyp
3.16813079 8.11762172 9.47743002 1 55 O_lyp
4.14498113 8.46940265 9.54101706 2 56 H_lyp
3.12757623 7.22175262 10.02123593 2 57 H_lyp
3.36981335 5.11169112 0.20472826 1 58 O_lyp
2.85582844 4.24083302 0.02732715 2 59 H_lyp
4.18194957 5.14051006 -0.45621373 2 60 H_lyp
8.17267473 5.73359413 3.27109487 1 61 O_lyp
8.20050984 4.81984609 2.77131768 2 62 H_lyp
7.18301777 6.07395019 3.16591652 2 63 H_lyp
4.75067238 4.97422472 1.92047269 1 64 O_lyp
5.35318973 5.81488664 1.95235525 2 65 H_lyp
3.75761089 5.31563137 1.98112425 2 66 H_lyp
3.17831727 8.56715037 3.09876943 1 67 O_lyp
2.28126072 8.23152850 3.52070423 2 68 H_lyp
3.11898792 8.40643501 2.07373316 2 69 H_lyp
0.85173087 2.73396881 0.33661871 1 70 O_lyp
0.78467355 2.70867213 1.37934107 2 71 H_lyp
-0.02012896 2.29982256 -0.02976655 2 72 H_lyp
8.99908441 0.88015717 1.31635756 1 73 O_lyp
9.55368649 0.86675398 0.44930622 2 74 H_lyp
9.59585326 0.47438208 2.05029801 2 75 H_lyp
2.65695476 3.24819377 7.18300899 1 76 O_lyp
1.81346367 3.78263075 6.85363165 2 77 H_lyp
2.53909439 3.10689983 8.20543675 2 78 H_lyp
9.13436518 9.09701929 2.92331143 1 79 O_lyp
9.81514448 9.44958448 2.22507957 2 80 H_lyp
9.57176907 8.24610339 3.31551424 2 81 H_lyp
0.70225881 1.64152380 3.19414808 1 82 O_lyp
0.54697919 2.51153968 2.64149715 2 83 H_lyp
1.64574418 1.28084036 2.95824469 2 84 H_lyp
2.35799707 3.25185254 4.46844114 1 85 O_lyp
3.05384580 2.48779028 4.37801660 2 86 H_lyp
2.59041085 3.76071542 5.34398639 2 87 H_lyp
5.94976075 7.42562133 6.54039297 1 88 O_lyp
6.45180620 8.32350205 6.32600802 2 89 H_lyp
5.03790436 7.47052619 6.02542280 2 90 H_lyp
8.58327202 9.56800242 8.58472618 1 91 O_lyp
9.14632194 8.84801170 9.10112976 2 92 H_lyp
8.25963613 10.26316474 9.28490514 2 93 H_lyp
4.29409381 4.27437619 5.19849633 1 94 O_lyp
4.59099778 3.50599364 4.56323579 2 95 H_lyp
3.88637051 3.83110768 6.05829392 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 2
<sparsity:sparsity for geom step 2
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 7>
<dData1D:(new from dSpData1D) n=126, refcount: 1>
refcount: 1>
new_DM -- step: 3
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 2
nrows_g=192 nrows=1 sparsity=.0034 nnzs=126, refcount: 9>
<dData2D:(temp array for extrapolation) n=126 m=1, refcount: 1>
refcount: 1>
Note: For starting DM, Qtot, Tr[D*S] = 256.00000000 255.61743275
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 1: 10 30: 34 5: 9
4 1: 10 1: 12 10: 12
5 1: 9 14: 17 33: 40
6 1: 10 13: 17 13: 17
7 1: 10 1: 12 18: 20
8 1: 10 1: 8 21: 27
9 11: 17 1: 7 21: 27
10 1: 10 9: 12 21: 27
11 11: 17 8: 12 21: 27
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 32: 40 1: 10 1: 3
16 32: 40 32: 40 1: 3
17 26: 40 1: 9 18: 21
18 1: 12 22: 25 13: 17
19 1: 8 1: 7 5: 9
20 11: 20 1: 12 10: 12
21 11: 20 1: 7 13: 17
22 31: 40 6: 9 12: 17
23 18: 25 1: 9 18: 21
24 26: 40 5: 9 22: 29
25 21: 31 1: 10 1: 3
26 1: 10 13: 21 10: 12
27 1: 9 1: 13 28: 32
28 21: 30 1: 4 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 21: 30 1: 9 9: 11
32 12: 21 22: 29 1: 3
33 9: 20 1: 8 5: 9
34 21: 31 5: 10 4: 8
35 9: 20 9: 13 5: 9
36 12: 19 30: 34 22: 27
37 22: 31 32: 40 1: 3
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 26: 40 1: 4 22: 29
42 31: 40 11: 21 1: 3
43 31: 40 1: 9 9: 11
44 32: 40 1: 5 4: 8
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 32: 40 10: 14 12: 17
48 32: 40 6: 10 4: 8
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 1: 8 8: 13 5: 9
52 11: 20 13: 21 10: 12
53 21: 30 11: 21 1: 3
54 11: 20 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 22: 30 22: 31 1: 3
58 11: 21 30: 33 5: 9
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 18: 25 1: 5 22: 29
62 28: 40 11: 16 35: 40
63 10: 17 14: 17 32: 40
64 21: 31 1: 4 4: 8
65 1: 9 8: 13 33: 40
66 1: 9 14: 21 1: 4
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 1: 11 22: 29 1: 3
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 1: 9 13: 17 21: 27
75 1: 11 26: 29 4: 9
76 22: 30 37: 40 12: 17
77 18: 27 11: 16 34: 40
78 18: 27 17: 21 34: 40
79 10: 17 18: 21 32: 40
80 10: 17 13: 21 18: 20
81 10: 17 1: 13 28: 31
82 28: 40 33: 40 18: 20
83 22: 30 22: 26 4: 8
84 22: 30 22: 26 12: 17
85 1: 8 1: 13 1: 4
86 18: 28 1: 4 34: 40
87 1: 11 22: 25 4: 9
88 10: 17 18: 21 21: 27
89 21: 30 5: 9 12: 17
90 10: 20 18: 21 4: 9
91 13: 21 22: 29 10: 12
92 18: 27 11: 21 30: 33
93 1: 10 22: 29 28: 32
94 31: 40 11: 16 4: 8
95 1: 9 18: 21 33: 40
96 11: 20 18: 21 13: 17
97 21: 31 10: 15 12: 17
98 31: 40 32: 36 12: 17
99 31: 40 22: 26 4: 8
100 1: 12 22: 29 10: 12
101 12: 21 35: 40 13: 17
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 26 21: 29
105 31: 40 1: 5 12: 17
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 10: 20 14: 17 4: 9
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 1: 10 1: 6 13: 17
115 22: 30 27: 31 4: 8
116 22: 30 22: 31 9: 11
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 10: 20 14: 21 1: 3
123 21: 30 18: 21 4: 8
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 1: 10 18: 21 13: 17
129 29: 40 22: 32 18: 20
130 1: 10 7: 12 13: 17
131 31: 40 27: 31 4: 8
132 22: 30 27: 31 12: 17
133 1: 10 35: 40 5: 9
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 27: 32 21: 29
137 20: 28 28: 32 21: 29
138 12: 21 22: 26 4: 9
139 10: 17 14: 21 28: 31
140 22: 31 37: 40 4: 8
141 20: 30 22: 27 35: 40
142 31: 40 22: 31 9: 11
143 31: 40 28: 31 34: 40
144 11: 19 22: 24 21: 27
145 11: 21 30: 40 1: 4
146 18: 25 10: 13 22: 29
147 22: 31 32: 36 4: 8
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 12: 21 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 12: 21 27: 29 4: 9
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 32: 40 37: 40 4: 8
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 32: 36 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 1: 9 14: 17 5: 9
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 13: 21 22: 25 13: 17
177 21: 31 10: 21 9: 11
178 18: 25 6: 9 22: 29
179 22: 30 32: 40 9: 11
180 12: 21 30: 40 10: 12
181 1: 11 35: 40 13: 17
182 11: 17 1: 12 18: 20
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 13: 21 26: 29 13: 17
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 17: 21 35: 40
190 20: 29 36: 40 34: 40
191 1: 9 18: 21 21: 27
192 1: 9 18: 21 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10645
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14945.382360 -14939.430938 -14939.430938 0.049454 -2.779501 0.507306
scf: 2 -14939.280531 -14939.439555 -14939.439555 0.037597 -2.887358 0.567394
scf: 3 -14939.562441 -14939.521600 -14939.521600 0.018637 -2.834580 0.042799
scf: 4 -14939.523016 -14939.522520 -14939.522520 0.002453 -2.844267 0.020288
scf: 5 -14939.522595 -14939.522565 -14939.522565 0.000354 -2.844928 0.015957
scf: 6 -14939.522591 -14939.522581 -14939.522581 0.000234 -2.845630 0.013208
scf: 7 -14939.522641 -14939.522614 -14939.522614 0.000281 -2.845979 0.008517
scf: 8 -14939.522630 -14939.522622 -14939.522622 0.000085 -2.845652 0.006563
scf: 9 -14939.522643 -14939.522635 -14939.522635 0.000267 -2.844332 0.002417
scf: 10 -14939.522636 -14939.522636 -14939.522636 0.000017 -2.844257 0.001803
scf: 11 -14939.522636 -14939.522636 -14939.522636 0.000048 -2.844188 0.000613
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000483723
max |H_out - H_in| (eV) : 0.0006130623
SCF cycle converged after 11 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14939.5226
siesta: Atomic forces (eV/Ang):
1 2.116704 0.536470 0.625457
2 -1.865312 0.694595 0.066847
3 -0.251440 -1.687519 -1.749015
4 -0.622031 -2.372213 -2.565752
5 1.525305 1.712476 0.080145
6 -0.604380 0.804458 1.938542
7 1.173709 -0.996841 -1.532151
8 2.144414 -0.760949 2.109760
9 -1.173942 0.962247 1.039645
10 -0.894397 -3.262001 -1.354550
11 0.443971 0.794713 -1.888824
12 1.284491 0.417168 2.974666
13 1.049016 -2.185963 0.708085
14 0.284628 1.691645 -1.173908
15 -2.040381 0.886248 1.619948
16 3.035351 -0.821482 -0.181840
17 0.691140 -0.213173 2.768437
18 -2.225661 -0.080621 -2.201669
19 1.489324 1.563493 -1.973509
20 0.398545 0.090486 2.848582
21 -2.304168 -1.623369 -0.880898
22 0.062978 -2.325033 -2.600466
23 -0.355169 0.999365 2.200557
24 0.127596 2.311314 -0.300041
25 1.521171 1.850820 0.451022
26 0.853379 -2.724293 0.030790
27 -1.741012 -0.432163 0.678746
28 -0.667650 2.509688 1.652828
29 -0.747307 0.344198 -1.820661
30 1.641457 -1.633268 1.027032
31 -0.444445 -0.508079 -0.793446
32 -2.655978 -0.540904 1.186845
33 -0.347112 1.863999 -1.713660
34 0.684661 1.528784 -2.029949
35 1.011702 -1.213611 2.522898
36 -1.790385 1.292838 0.838364
37 -0.187551 1.443207 -3.180981
38 -0.340472 -0.859345 1.780534
39 2.366702 -1.053202 -0.411584
40 -1.277142 -2.427926 -0.350101
41 0.173074 1.928047 -2.391202
42 0.991935 0.361391 2.261341
43 1.271773 0.889224 -2.584316
44 -0.229170 -1.609145 1.101569
45 -1.129589 1.446935 1.203354
46 -0.990756 -1.377693 0.995567
47 1.870651 -0.941457 -1.660482
48 -0.347583 2.287357 -0.278935
49 0.124036 -0.666481 -2.020609
50 -0.947835 2.633711 1.284679
51 -0.204995 -1.549061 1.937252
52 -0.710784 1.963576 -1.904193
53 0.762740 0.121888 2.057386
54 -0.647345 -2.852164 -0.074609
55 -2.029817 1.744486 -0.822767
56 2.342215 0.803837 0.120390
57 -0.189663 -2.779776 0.624209
58 -2.727761 2.561393 -0.663285
59 -1.480613 -1.889940 -0.165732
60 2.210258 -0.037153 -1.493302
61 1.973946 1.422161 2.613460
62 -3.056036 -0.452093 -2.400116
63 -2.603127 1.788889 -0.480994
64 2.081040 -2.773910 1.833912
65 1.376848 1.477489 0.295160
66 -1.637759 0.238320 0.091185
67 1.459804 2.161764 0.416430
68 -1.569561 -0.878123 0.954736
69 -0.160118 -0.367803 -2.617680
70 2.095260 1.658091 -2.850804
71 0.866439 -0.236283 1.298497
72 -1.900008 -1.026230 -0.858848
73 -3.721402 2.630927 -2.345458
74 1.655426 -0.619914 -2.347002
75 0.508461 4.961700 1.447941
76 2.545086 -1.185387 -1.515889
77 -2.668106 0.945883 -0.292455
78 0.058407 -0.191630 2.257040
79 -2.539888 -0.986943 1.386130
80 2.842009 -4.185802 -0.338041
81 1.378798 -2.801965 2.157263
82 -1.567413 -2.669512 1.100340
83 -0.209180 2.384770 1.174207
84 2.599635 -0.798683 0.108986
85 -3.351883 -0.396792 -2.204289
86 0.928979 -2.036777 -0.063351
87 -0.113834 0.964973 0.796743
88 0.887246 -2.360932 2.103815
89 0.931621 2.230355 -0.208781
90 -1.895173 0.040644 -1.455291
91 -0.251366 0.760972 -2.160197
92 1.463481 -2.072797 0.760239
93 -1.274241 1.181608 1.625460
94 1.888102 3.275756 0.128493
95 1.182949 -0.892626 -1.528273
96 0.189123 -0.653222 2.987087
----------------------------------------
Tot -0.125354 0.152107 -0.157307
----------------------------------------
Max 4.961700
Res 1.645373 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 4.961700 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -135.03 -122.78 -139.57 8.79 -2.24 16.42
(Free)E + p*V (eV/cell) -14860.1518
Target enthalpy (eV/cell) -14939.5226
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.902 1.872 1.683 1.757 1.590
4 6.923 1.883 1.664 1.701 1.675
7 6.904 1.876 1.808 1.694 1.526
10 6.908 1.873 1.623 1.510 1.902
13 6.908 1.862 1.690 1.648 1.707
16 6.783 1.886 1.762 1.509 1.626
19 6.950 1.868 1.855 1.563 1.664
22 6.955 1.875 1.556 1.531 1.994
25 6.883 1.883 1.632 1.920 1.447
28 6.894 1.871 1.682 1.482 1.859
31 6.848 1.870 1.607 1.675 1.696
34 6.871 1.879 1.662 1.757 1.573
37 6.945 1.853 1.873 1.564 1.655
40 6.943 1.872 1.759 1.460 1.853
43 6.886 1.867 1.424 1.680 1.915
46 6.871 1.894 1.501 1.710 1.766
49 6.903 1.882 1.432 1.656 1.933
52 6.914 1.868 1.579 1.546 1.921
55 6.935 1.892 1.612 1.870 1.561
58 6.889 1.873 1.611 1.808 1.598
61 6.882 1.870 1.495 1.865 1.653
64 6.926 1.872 1.641 1.988 1.425
67 6.877 1.897 1.934 1.415 1.631
70 6.845 1.887 1.879 1.441 1.638
73 6.809 1.883 1.900 1.352 1.673
76 6.935 1.858 1.848 1.509 1.720
79 6.817 1.875 1.624 1.666 1.652
82 6.825 1.890 1.584 1.798 1.554
85 6.826 1.874 1.579 1.620 1.752
88 6.967 1.868 1.686 1.866 1.547
91 6.914 1.869 1.564 1.661 1.820
94 6.870 1.880 1.640 1.487 1.862
Species: H_lyp
Atom Qatom Qorb
1s
2 0.577 0.577
3 0.476 0.476
5 0.551 0.551
6 0.519 0.519
8 0.551 0.551
9 0.557 0.557
11 0.570 0.570
12 0.545 0.545
14 0.562 0.562
15 0.487 0.487
17 0.577 0.577
18 0.613 0.613
20 0.537 0.537
21 0.507 0.507
23 0.566 0.566
24 0.542 0.542
26 0.511 0.511
27 0.583 0.583
29 0.566 0.566
30 0.513 0.513
32 0.557 0.557
33 0.619 0.619
35 0.562 0.562
36 0.533 0.533
38 0.514 0.514
39 0.544 0.544
41 0.521 0.521
42 0.553 0.553
44 0.552 0.552
45 0.580 0.580
47 0.547 0.547
48 0.563 0.563
50 0.533 0.533
51 0.535 0.535
53 0.532 0.532
54 0.505 0.505
56 0.553 0.553
57 0.524 0.524
59 0.601 0.601
60 0.543 0.543
62 0.619 0.619
63 0.468 0.468
65 0.594 0.594
66 0.553 0.553
68 0.557 0.557
69 0.573 0.573
71 0.593 0.593
72 0.575 0.575
74 0.625 0.625
75 0.607 0.607
77 0.511 0.511
78 0.514 0.514
80 0.669 0.669
81 0.503 0.503
83 0.614 0.614
84 0.567 0.567
86 0.583 0.583
87 0.577 0.577
89 0.526 0.526
90 0.547 0.547
92 0.529 0.529
93 0.574 0.574
95 0.569 0.569
96 0.561 0.561
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 3
====================================
outcoor: Atomic coordinates (Ang):
0.23752080 3.69691460 6.48685666 1 1 O_lyp
-0.66635045 4.12610774 6.86808128 2 2 H_lyp
-0.10024962 2.91197966 5.80349332 2 3 H_lyp
1.48366655 6.97705884 7.12827299 1 4 O_lyp
2.09210450 7.84944935 6.91441393 2 5 H_lyp
0.86740370 7.30549646 7.97208674 2 6 H_lyp
6.86659894 0.23839429 6.61023177 1 7 O_lyp
7.57949133 0.08793748 7.38902649 2 8 H_lyp
6.08845268 0.85493777 7.05014642 2 9 H_lyp
6.03615624 9.58121438 1.20102442 1 10 O_lyp
6.13629260 10.50670886 0.65610828 2 11 H_lyp
6.54808662 9.77711657 2.16860251 2 12 H_lyp
6.00535881 7.24017067 2.70973968 1 13 O_lyp
6.22909142 8.01566081 1.99063767 2 14 H_lyp
5.15781235 7.63840383 3.27182005 2 15 H_lyp
0.10489568 4.09364873 2.56423440 1 16 O_lyp
-0.72010894 4.44119652 3.14144833 2 17 H_lyp
-0.32140684 3.57934427 1.72955809 2 18 H_lyp
0.58249541 7.04265681 4.24433923 1 19 O_lyp
0.82220288 6.96969961 5.30908928 2 20 H_lyp
-0.34946127 6.46763526 4.13606172 2 21 H_lyp
5.50192516 1.91175616 8.80181365 1 22 O_lyp
5.44460824 1.92022515 9.90142611 2 23 H_lyp
5.52174271 2.96918152 8.54944166 2 24 H_lyp
3.84709798 7.04304212 4.79871033 1 25 O_lyp
4.29005258 6.04899246 4.76944535 2 26 H_lyp
2.83982675 6.88297935 5.14476102 2 27 H_lyp
9.20486651 5.08278854 9.02317475 1 28 O_lyp
8.95542506 4.94184907 7.98612517 2 29 H_lyp
9.73152139 4.16944833 9.32006397 2 30 H_lyp
5.39757330 0.62006936 5.11264095 1 31 O_lyp
4.53497377 0.64315999 5.72392964 2 32 H_lyp
5.41736175 1.50596835 4.53968043 2 33 H_lyp
5.62548319 2.25542068 1.56754034 1 34 O_lyp
6.01126658 1.34504246 2.01934325 2 35 H_lyp
4.69112911 2.42936642 2.06897878 2 36 H_lyp
7.03645075 0.66339220 3.62176279 1 37 O_lyp
6.90368519 0.70183569 4.71572816 2 38 H_lyp
7.93279439 0.10835030 3.49190001 2 39 H_lyp
5.63230760 5.31674445 8.64940274 1 40 O_lyp
5.78521781 6.06995900 7.86138705 2 41 H_lyp
6.14107267 5.72107513 9.52396653 2 42 H_lyp
2.24909126 5.26026653 2.69497947 1 43 O_lyp
2.35968803 4.37292093 3.31470096 2 44 H_lyp
1.92018621 6.02399659 3.37768664 2 45 H_lyp
7.29896857 6.31226631 0.81295619 1 46 O_lyp
7.94703975 6.06210580 -0.01840917 2 47 H_lyp
7.03008625 7.34514277 0.66546454 2 48 H_lyp
3.07711064 0.61606449 6.12967924 1 49 O_lyp
2.94618486 1.62345506 6.53207016 2 50 H_lyp
3.01616578 -0.03463659 6.99143422 2 51 H_lyp
0.36559758 7.70207162 9.61482508 1 52 O_lyp
0.53266512 7.87705403 10.66883786 2 53 H_lyp
0.05509182 6.65235422 9.56686827 2 54 H_lyp
3.14659804 8.13497234 9.46505342 1 55 O_lyp
4.16957794 8.47866065 9.54201848 2 56 H_lyp
3.12518976 7.19393982 10.03229900 2 57 H_lyp
3.34993727 5.13304853 0.20938377 1 58 O_lyp
2.84187490 4.22196092 0.02469542 2 59 H_lyp
4.20356145 5.14101227 -0.47217802 2 60 H_lyp
8.19500063 5.74697913 3.29186521 1 61 O_lyp
8.18131953 4.80984840 2.75292279 2 62 H_lyp
7.15645065 6.08768575 3.16189587 2 63 H_lyp
4.77102673 4.94884598 1.93078426 1 64 O_lyp
5.36617654 5.82954426 1.95467427 2 65 H_lyp
3.73556624 5.32117610 1.98223120 2 66 H_lyp
3.19635274 8.58403688 3.10740395 1 67 O_lyp
2.26280974 8.22318733 3.53124379 2 68 H_lyp
3.11799141 8.40292486 2.04787042 2 69 H_lyp
0.87312742 2.74772272 0.31359713 1 70 O_lyp
0.78927520 2.70736470 1.39838458 2 71 H_lyp
-0.03994825 2.28980169 -0.03938284 2 72 H_lyp
8.96864445 0.90000423 1.30292501 1 73 O_lyp
9.56716241 0.86355789 0.42893081 2 74 H_lyp
9.60161647 0.50823520 2.06043759 2 75 H_lyp
2.68349483 3.23656918 7.16627937 1 76 O_lyp
1.78733559 3.79506718 6.84736127 2 77 H_lyp
2.53820271 3.10384736 8.23048216 2 78 H_lyp
9.10912473 9.09408443 2.93641807 1 79 O_lyp
9.83990212 9.41963690 2.22023483 2 80 H_lyp
9.58335708 8.22257441 3.33078981 2 81 H_lyp
0.68479057 1.62333185 3.20807849 1 82 O_lyp
0.54400485 2.53274797 2.64297126 2 83 H_lyp
1.67109230 1.27182164 2.95651638 2 84 H_lyp
2.32648650 3.25367659 4.44721395 1 85 O_lyp
3.06747858 2.46592224 4.37606371 2 86 H_lyp
2.59081537 3.77126599 5.35775761 2 87 H_lyp
5.95937134 7.40161772 6.56047221 1 88 O_lyp
6.46343077 8.34664253 6.32207746 2 89 H_lyp
5.01614864 7.47104429 6.01106986 2 90 H_lyp
8.57664755 9.57588172 8.55984120 1 91 O_lyp
9.16239276 8.82636168 9.11208829 2 92 H_lyp
8.24943171 10.27612695 9.29958097 2 93 H_lyp
4.30797079 4.30822352 5.19701579 1 94 O_lyp
4.60182637 3.49220276 4.54672950 2 95 H_lyp
3.88279687 3.82235216 6.08615254 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 3
<sparsity:sparsity for geom step 3
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 7>
<dData1D:(new from dSpData1D) n=125, refcount: 1>
refcount: 1>
new_DM -- step: 4
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 3
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 9>
<dData2D:(temp array for extrapolation) n=125 m=1, refcount: 1>
refcount: 1>
Note: For starting DM, Qtot, Tr[D*S] = 256.00000000 255.34424972
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 1: 10 30: 34 5: 9
3 1: 8 1: 7 5: 9
4 11: 20 1: 12 10: 12
5 1: 10 9: 12 21: 27
6 11: 20 13: 17 13: 17
7 1: 10 1: 12 18: 20
8 1: 10 1: 8 21: 27
9 11: 17 1: 7 21: 27
10 32: 40 1: 10 1: 3
11 11: 17 8: 12 21: 27
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 31: 40 1: 9 9: 11
16 22: 30 32: 40 9: 11
17 26: 40 1: 9 18: 21
18 32: 40 32: 40 1: 3
19 21: 30 1: 9 9: 11
20 1: 10 1: 12 10: 12
21 11: 20 1: 7 13: 17
22 1: 12 22: 25 13: 17
23 18: 25 1: 9 18: 21
24 26: 40 5: 9 22: 29
25 21: 31 1: 10 1: 3
26 22: 31 32: 40 1: 3
27 1: 9 1: 13 28: 32
28 31: 40 6: 9 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 21: 30 1: 4 12: 17
33 9: 20 1: 8 5: 9
34 21: 30 11: 21 1: 3
35 1: 8 8: 13 5: 9
36 32: 40 10: 14 12: 17
37 1: 10 7: 12 13: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 26: 40 1: 4 22: 29
42 21: 31 5: 10 4: 8
43 22: 30 22: 26 12: 17
44 12: 21 22: 29 1: 3
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 27: 31 12: 17
48 12: 19 30: 34 22: 27
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 32: 40 6: 10 4: 8
52 1: 10 13: 21 10: 12
53 31: 40 11: 21 1: 3
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 1: 11 22: 25 4: 9
58 32: 40 1: 5 4: 8
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 1: 9 14: 18 33: 40
62 28: 40 11: 16 35: 40
63 10: 17 14: 17 32: 40
64 22: 30 27: 31 4: 8
65 1: 9 8: 13 33: 40
66 1: 9 14: 21 1: 4
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 10: 20 14: 17 4: 9
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 18: 25 1: 5 22: 29
75 1: 11 22: 29 1: 3
76 11: 21 30: 33 5: 9
77 18: 27 11: 16 34: 40
78 18: 27 17: 21 34: 40
79 10: 17 18: 21 32: 40
80 21: 31 1: 4 4: 8
81 10: 17 1: 13 28: 31
82 1: 9 13: 17 21: 27
83 31: 40 22: 26 4: 8
84 11: 20 13: 21 10: 12
85 1: 8 1: 13 1: 4
86 28: 40 33: 40 18: 20
87 10: 20 18: 21 4: 9
88 10: 17 18: 21 21: 27
89 18: 28 1: 4 34: 40
90 1: 11 26: 29 4: 9
91 22: 30 37: 40 12: 17
92 18: 27 11: 21 30: 33
93 1: 10 22: 29 28: 32
94 31: 40 22: 31 1: 3
95 10: 20 14: 21 1: 3
96 1: 9 19: 21 33: 40
97 21: 31 10: 15 12: 17
98 31: 40 32: 36 12: 17
99 12: 21 22: 26 4: 9
100 10: 17 13: 21 18: 20
101 31: 40 1: 5 12: 17
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 26 21: 29
105 21: 30 5: 9 12: 17
106 13: 21 22: 29 10: 12
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 10: 17 14: 21 28: 31
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 9: 20 9: 13 5: 9
115 22: 30 22: 26 4: 8
116 1: 12 22: 29 10: 12
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 18: 25 10: 13 22: 29
123 1: 10 22: 24 21: 27
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 29: 40 22: 32 18: 20
130 31: 40 11: 16 4: 8
131 31: 40 27: 31 4: 8
132 22: 30 22: 31 9: 11
133 12: 21 35: 40 13: 17
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 27: 32 21: 29
137 20: 28 28: 32 21: 29
138 1: 10 1: 6 13: 17
139 18: 25 6: 9 22: 29
140 1: 10 18: 21 13: 17
141 20: 30 22: 27 35: 40
142 31: 40 22: 31 9: 11
143 31: 40 28: 31 34: 40
144 11: 20 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 11: 17 1: 12 18: 20
147 22: 31 32: 36 4: 8
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 11: 19 22: 24 21: 27
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 12: 21 27: 29 4: 9
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 32: 40 37: 40 4: 8
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 32: 36 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 13: 21 26: 29 13: 17
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 13: 21 22: 25 13: 17
177 21: 31 10: 21 9: 11
178 22: 31 37: 40 4: 8
179 1: 10 35: 40 5: 9
180 12: 21 30: 40 10: 12
181 1: 11 35: 40 13: 17
182 1: 9 18: 21 21: 27
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 1: 9 18: 21 5: 9
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 17: 21 35: 40
190 20: 29 36: 40 34: 40
191 12: 21 30: 34 13: 17
192 1: 9 14: 17 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10619
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14952.675297 -14944.435002 -14944.435002 0.076884 -2.922298 0.842321
scf: 2 -14943.776602 -14944.399058 -14944.399058 0.068996 -2.523005 1.083198
scf: 3 -14944.845122 -14944.702723 -14944.702723 0.036267 -3.016160 0.074606
scf: 4 -14944.707141 -14944.705850 -14944.705850 0.004808 -2.428851 0.048069
scf: 5 -14944.706438 -14944.706248 -14944.706248 0.001262 -2.431645 0.028972
scf: 6 -14944.706376 -14944.706316 -14944.706316 0.000264 -2.432494 0.025059
scf: 7 -14944.706575 -14944.706457 -14944.706457 0.000675 -2.432798 0.016280
scf: 8 -14944.706522 -14944.706491 -14944.706491 0.000182 -2.432109 0.012855
scf: 9 -14944.706553 -14944.706530 -14944.706530 0.000442 -2.430300 0.006075
scf: 10 -14944.706537 -14944.706534 -14944.706534 0.000076 -2.430082 0.004086
scf: 11 -14944.706538 -14944.706536 -14944.706536 0.000081 -2.430030 0.001863
scf: 12 -14944.706537 -14944.706537 -14944.706537 0.000039 -2.430141 0.001777
scf: 13 -14944.706537 -14944.706537 -14944.706537 0.000022 -2.430161 0.001488
scf: 14 -14944.706537 -14944.706537 -14944.706537 0.000033 -2.430028 0.000877
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000334034
max |H_out - H_in| (eV) : 0.0008767404
SCF cycle converged after 14 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14944.7065
siesta: Atomic forces (eV/Ang):
1 0.392785 -0.147681 -0.022482
2 -0.760767 0.160972 -0.400855
3 0.304300 -0.487937 -0.679285
4 -0.612595 -0.517032 -1.690482
5 0.563060 0.329371 0.421070
6 0.362077 0.325736 0.622712
7 1.009019 -0.320615 0.053728
8 1.152556 -0.573160 1.033572
9 -0.001881 0.045945 0.464775
10 -0.060999 -1.719929 -0.599432
11 0.327459 -0.441299 -1.108210
12 0.473691 0.223539 1.568082
13 0.120379 -0.421467 0.610586
14 -0.035987 0.583755 -0.157808
15 -0.811964 0.268640 0.795073
16 1.560581 -1.032871 -0.664805
17 1.176449 -0.409101 2.091360
18 -1.722313 0.565873 -1.136198
19 0.473211 0.574170 -0.418069
20 -0.002347 0.236858 1.182542
21 -0.866276 -0.743162 -0.733273
22 -0.023739 -0.701071 -1.388712
23 -0.271933 0.969524 0.536870
24 0.115348 0.745183 0.087195
25 0.778250 0.307678 0.907656
26 0.237157 -1.375155 0.084228
27 -0.349347 -0.219697 0.207280
28 -0.157050 0.885863 0.565664
29 -0.372784 0.573574 -0.255395
30 0.861549 -0.242035 0.603676
31 -1.322730 0.535130 -0.974825
32 -1.639606 -0.516367 0.491667
33 -0.427354 0.818966 -0.969452
34 0.074171 0.362912 -0.600223
35 0.459393 0.097764 1.762314
36 -0.526008 1.026243 0.135892
37 0.692857 0.872295 -1.822580
38 -0.288537 -0.915792 0.266380
39 1.236757 -0.339575 -0.246658
40 -0.363735 -0.770514 -0.450140
41 -0.064956 0.817079 -1.146217
42 0.327598 -0.159849 1.097675
43 0.873672 0.877739 -0.776969
44 -0.325219 -0.378454 0.223723
45 -0.643481 0.331379 0.204782
46 -0.317188 -0.456539 -0.524835
47 0.815390 -0.533657 -0.365312
48 0.020360 0.969568 -0.142413
49 -0.306579 -0.276769 -0.101056
50 -0.736770 1.166546 0.747881
51 -0.090167 -0.474633 0.608831
52 -0.892605 0.609604 -0.238782
53 0.501626 -0.162380 0.352433
54 -0.209527 -1.259863 -0.031809
55 -0.534913 0.771984 0.210568
56 0.769512 0.239925 0.040548
57 -0.103084 -1.261798 -0.338908
58 -2.146636 1.467476 -1.749997
59 -0.750107 -0.679738 0.090989
60 1.056416 -0.044258 -0.560201
61 0.481197 0.496478 1.660179
62 -2.647234 0.605542 -1.626311
63 -1.157131 1.453076 -0.255880
64 1.072419 -1.348949 1.775346
65 0.641280 0.480471 0.211430
66 -0.052366 -0.351550 0.062480
67 0.075810 1.453333 -0.516421
68 -0.261960 -0.389098 0.307711
69 -0.087733 -0.125269 -1.113809
70 0.719241 1.007190 -1.921549
71 0.953094 -0.196060 -0.227953
72 -0.646055 -0.452144 -0.282006
73 -2.259625 1.947699 -2.365254
74 0.976472 -0.619695 -1.332837
75 0.041898 4.207362 1.101973
76 0.908988 -0.572487 -0.295149
77 -1.255342 0.067524 0.185093
78 0.308449 0.027636 0.636795
79 -0.812478 -1.438923 0.553328
80 1.516620 -3.331524 0.211048
81 0.804301 -1.766216 1.796655
82 -0.304454 -2.210980 0.046320
83 -0.029863 1.349813 1.866681
84 1.111239 -0.264487 0.459689
85 -1.586780 -0.934144 -0.908050
86 -0.224510 -0.700006 0.057870
87 -0.295145 0.337378 -0.466536
88 0.235993 -0.926265 0.958842
89 0.179385 0.867495 0.226944
90 -0.482100 -0.086771 -0.609022
91 0.375343 0.437315 -0.322288
92 0.499386 -0.859529 -0.115956
93 -0.864293 0.310792 0.784231
94 1.441720 1.102078 0.361107
95 0.678021 0.338149 -0.531425
96 0.761049 0.082311 1.640311
----------------------------------------
Tot -0.188725 0.176436 -0.212044
----------------------------------------
Max 4.207362
Res 0.895112 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 4.207362 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -85.54 -64.54 -79.60 4.88 -6.58 10.70
(Free)E + p*V (eV/cell) -14898.8293
Target enthalpy (eV/cell) -14944.7065
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.878 1.881 1.683 1.757 1.557
4 6.899 1.900 1.638 1.688 1.672
7 6.886 1.888 1.797 1.674 1.526
10 6.891 1.888 1.595 1.510 1.898
13 6.885 1.873 1.666 1.648 1.699
16 6.762 1.901 1.753 1.501 1.607
19 6.928 1.883 1.840 1.548 1.658
22 6.938 1.893 1.527 1.526 1.993
25 6.859 1.897 1.614 1.912 1.435
28 6.868 1.884 1.664 1.467 1.853
31 6.830 1.879 1.590 1.673 1.687
34 6.845 1.893 1.660 1.725 1.566
37 6.927 1.865 1.864 1.554 1.644
40 6.924 1.885 1.742 1.463 1.834
43 6.864 1.882 1.428 1.653 1.902
46 6.846 1.909 1.486 1.695 1.757
49 6.878 1.897 1.436 1.627 1.918
52 6.887 1.882 1.569 1.525 1.911
55 6.912 1.909 1.604 1.863 1.536
58 6.871 1.886 1.581 1.806 1.599
61 6.863 1.884 1.484 1.849 1.645
64 6.914 1.887 1.611 1.986 1.430
67 6.852 1.912 1.924 1.403 1.613
70 6.824 1.904 1.866 1.437 1.617
73 6.801 1.900 1.906 1.349 1.646
76 6.909 1.872 1.837 1.498 1.703
79 6.802 1.888 1.629 1.661 1.624
82 6.802 1.905 1.576 1.789 1.532
85 6.800 1.892 1.573 1.607 1.728
88 6.950 1.882 1.669 1.850 1.549
91 6.896 1.880 1.568 1.632 1.817
94 6.846 1.896 1.603 1.488 1.859
Species: H_lyp
Atom Qatom Qorb
1s
2 0.585 0.585
3 0.479 0.479
5 0.563 0.563
6 0.528 0.528
8 0.561 0.561
9 0.567 0.567
11 0.581 0.581
12 0.562 0.562
14 0.570 0.570
15 0.493 0.493
17 0.583 0.583
18 0.623 0.623
20 0.550 0.550
21 0.518 0.518
23 0.579 0.579
24 0.558 0.558
26 0.519 0.519
27 0.596 0.596
29 0.579 0.579
30 0.520 0.520
32 0.564 0.564
33 0.633 0.633
35 0.570 0.570
36 0.544 0.544
38 0.518 0.518
39 0.551 0.551
41 0.532 0.532
42 0.565 0.565
44 0.563 0.563
45 0.594 0.594
47 0.559 0.559
48 0.574 0.574
50 0.545 0.545
51 0.547 0.547
53 0.540 0.540
54 0.513 0.513
56 0.567 0.567
57 0.537 0.537
59 0.616 0.616
60 0.553 0.553
62 0.623 0.623
63 0.474 0.474
65 0.608 0.608
66 0.565 0.565
68 0.570 0.570
69 0.588 0.588
71 0.606 0.606
72 0.589 0.589
74 0.640 0.640
75 0.607 0.607
77 0.518 0.518
78 0.521 0.521
80 0.674 0.674
81 0.515 0.515
83 0.626 0.626
84 0.578 0.578
86 0.595 0.595
87 0.588 0.588
89 0.538 0.538
90 0.560 0.560
92 0.540 0.540
93 0.585 0.585
95 0.584 0.584
96 0.571 0.571
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 4
====================================
outcoor: Atomic coordinates (Ang):
0.27524273 3.71034138 6.50023745 1 1 O_lyp
-0.69520537 4.13889404 6.87449618 2 2 H_lyp
-0.10838574 2.88179917 5.77451437 2 3 H_lyp
1.47863907 6.93503424 7.09515015 1 4 O_lyp
2.11758900 7.88076418 6.90997971 2 5 H_lyp
0.84946680 7.31779753 8.00549513 2 6 H_lyp
6.87977515 0.22124371 6.57866381 1 7 O_lyp
7.61083949 0.07836227 7.42000565 2 8 H_lyp
6.06341046 0.87473334 7.06613862 2 9 H_lyp
6.01722911 9.53455044 1.17802365 1 10 O_lyp
6.14128765 10.52791031 0.62920509 2 11 H_lyp
6.57038174 9.78276569 2.21512110 2 12 H_lyp
6.02548859 7.20061623 2.71747103 1 13 O_lyp
6.23630818 8.04396830 1.96732989 2 14 H_lyp
5.12432386 7.65301277 3.29707876 2 15 H_lyp
0.14847178 4.08860711 2.56759566 1 16 O_lyp
-0.72019542 4.44214632 3.17434994 2 17 H_lyp
-0.34633754 3.57088578 1.69745536 2 18 H_lyp
0.60829021 7.06857974 4.20809378 1 19 O_lyp
0.83188951 6.96946116 5.35599426 2 20 H_lyp
-0.38872355 6.44194418 4.12499753 2 21 H_lyp
5.50345335 1.87346027 8.76356340 1 22 O_lyp
5.44032827 1.92834186 9.94224807 2 23 H_lyp
5.52312608 3.00822174 8.54106047 2 24 H_lyp
3.86860831 7.07720888 4.79768658 1 25 O_lyp
4.30597029 6.00850276 4.76900506 2 26 H_lyp
2.80793729 6.87740637 5.15647830 2 27 H_lyp
9.19285357 5.12469200 9.04950881 1 28 O_lyp
8.94385549 4.94331686 7.95129740 2 29 H_lyp
9.75654302 4.13725847 9.33599073 2 30 H_lyp
5.40358497 0.60424844 5.10679934 1 31 O_lyp
4.49923202 0.63773040 5.74292496 2 32 H_lyp
5.41526751 1.53451996 4.51561281 2 33 H_lyp
5.63777373 2.28353756 1.53383592 1 34 O_lyp
6.02814796 1.31729321 2.05057385 2 35 H_lyp
4.66027346 2.44473945 2.08404411 2 36 H_lyp
7.02569537 0.68196089 3.57553418 1 37 O_lyp
6.89867250 0.69535487 4.75202710 2 38 H_lyp
7.96676452 0.09116481 3.48547026 2 39 H_lyp
5.61032541 5.27447028 8.64892864 1 40 O_lyp
5.78935969 6.10167840 7.82279816 2 41 H_lyp
6.15780012 5.72986656 9.55886710 2 42 H_lyp
2.26424587 5.26841609 2.65130426 1 43 O_lyp
2.35944039 4.34348763 3.33430854 2 44 H_lyp
1.90445806 6.05098304 3.39966426 2 45 H_lyp
7.28227385 6.29025135 0.83911677 1 46 O_lyp
7.97644185 6.04790142 -0.04889832 2 47 H_lyp
7.02221673 7.38097704 0.66186430 2 48 H_lyp
3.08275506 0.60500251 6.08973469 1 49 O_lyp
2.93521842 1.66588761 6.54958941 2 50 H_lyp
3.01312218 -0.06213105 7.02432464 2 51 H_lyp
0.36210295 7.73546801 9.57896529 1 52 O_lyp
0.54271867 7.88265351 10.70760528 2 53 H_lyp
0.04325773 6.60659508 9.56438230 2 54 H_lyp
3.11214563 8.16273332 9.44525087 1 55 O_lyp
4.20893284 8.49347344 9.54362074 2 56 H_lyp
3.12137140 7.14943934 10.04999992 2 57 H_lyp
3.31813553 5.16722038 0.21683259 1 58 O_lyp
2.81954925 4.19176556 0.02048465 2 59 H_lyp
4.23814047 5.14181581 -0.49772089 2 60 H_lyp
8.23072205 5.76839511 3.32509774 1 61 O_lyp
8.15061503 4.79385209 2.72349095 2 62 H_lyp
7.11394327 6.10966266 3.15546282 2 63 H_lyp
4.80359369 4.90823999 1.94728277 1 64 O_lyp
5.38695543 5.85299644 1.95838470 2 65 H_lyp
3.70029478 5.33004766 1.98400233 2 66 H_lyp
3.22520949 8.61105530 3.12121918 1 67 O_lyp
2.23328817 8.20984145 3.54810707 2 68 H_lyp
3.11639699 8.39730862 2.00649004 2 69 H_lyp
0.90736191 2.76972898 0.27676260 1 70 O_lyp
0.79663783 2.70527280 1.42885420 2 71 H_lyp
-0.07165911 2.27376830 -0.05476892 2 72 H_lyp
8.91994051 0.93175952 1.28143292 1 73 O_lyp
9.58872389 0.85844416 0.39633016 2 74 H_lyp
9.61083760 0.56240019 2.07666091 2 75 H_lyp
2.72595894 3.21796983 7.13951199 1 76 O_lyp
1.74553066 3.81496546 6.83732867 2 77 H_lyp
2.53677603 3.09896341 8.27055481 2 78 H_lyp
9.06874002 9.08938867 2.95738870 1 79 O_lyp
9.87951434 9.37172077 2.21248325 2 80 H_lyp
9.60189789 8.18492805 3.35523071 2 81 H_lyp
0.65684138 1.59422474 3.23036715 1 82 O_lyp
0.53924592 2.56668125 2.64532984 2 83 H_lyp
1.71164929 1.25739169 2.95375108 2 84 H_lyp
2.27606959 3.25659505 4.41325045 1 85 O_lyp
3.08929104 2.43093338 4.37293908 2 86 H_lyp
2.59146261 3.78814689 5.37979156 2 87 H_lyp
5.97474828 7.36321194 6.59259899 1 88 O_lyp
6.48203008 8.38366730 6.31578857 2 89 H_lyp
4.98133951 7.47187324 5.98810517 2 90 H_lyp
8.56604840 9.58848860 8.52002521 1 91 O_lyp
9.18810609 8.79172165 9.12962194 2 92 H_lyp
8.23310464 10.29686648 9.32306229 2 93 H_lyp
4.33017396 4.36237924 5.19464692 1 94 O_lyp
4.61915210 3.47013735 4.52031943 2 95 H_lyp
3.87707903 3.80834334 6.13072635 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 4
<sparsity:sparsity for geom step 4
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 7>
<dData1D:(new from dSpData1D) n=125, refcount: 1>
refcount: 1>
new_DM -- step: 5
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 4
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 9>
<dData2D:(temp array for extrapolation) n=125 m=1, refcount: 1>
refcount: 1>
Note: For starting DM, Qtot, Tr[D*S] = 256.00000000 254.85369461
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 32: 40 32: 40 1: 3
4 11: 20 1: 12 10: 12
5 1: 9 14: 17 33: 40
6 11: 20 14: 21 1: 3
7 1: 10 1: 12 18: 20
8 1: 10 1: 8 21: 27
9 18: 26 1: 5 22: 29
10 1: 10 9: 12 21: 27
11 31: 40 6: 9 12: 17
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 11: 20 13: 21 10: 12
16 12: 21 22: 29 1: 3
17 27: 40 1: 9 18: 21
18 21: 30 1: 4 12: 17
19 1: 8 1: 7 5: 9
20 1: 10 1: 12 10: 12
21 11: 20 1: 7 13: 17
22 32: 40 1: 10 1: 3
23 11: 17 8: 12 21: 27
24 27: 40 5: 9 22: 29
25 11: 17 1: 7 21: 27
26 18: 26 6: 9 22: 29
27 1: 9 1: 13 28: 32
28 1: 12 22: 25 13: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 12: 19 30: 34 22: 27
33 9: 20 1: 8 5: 9
34 31: 40 11: 21 1: 3
35 1: 8 8: 13 5: 9
36 21: 30 1: 9 9: 11
37 1: 10 7: 12 13: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 27: 40 1: 4 22: 29
42 21: 31 1: 10 1: 3
43 22: 30 22: 26 12: 17
44 32: 40 6: 10 4: 8
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 27: 31 12: 17
48 32: 40 1: 5 4: 8
49 32: 40 10: 14 12: 17
50 21: 30 11: 17 4: 8
51 11: 20 14: 17 4: 9
52 21: 31 10: 16 12: 17
53 21: 31 5: 10 4: 8
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 31: 40 1: 9 9: 11
58 21: 31 1: 4 4: 8
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 18: 28 1: 10 30: 33
62 21: 30 11: 21 1: 3
63 10: 17 14: 17 32: 40
64 13: 21 22: 29 10: 12
65 1: 9 8: 13 33: 40
66 18: 26 1: 9 18: 21
67 31: 40 17: 21 4: 8
68 1: 10 13: 21 10: 12
69 32: 40 15: 21 12: 17
70 1: 11 22: 29 1: 3
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 1: 10 14: 21 1: 4
75 1: 11 26: 29 4: 9
76 22: 30 32: 35 12: 17
77 1: 9 18: 21 33: 40
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 10: 17 13: 21 18: 20
81 18: 27 11: 16 34: 40
82 1: 11 22: 25 4: 9
83 11: 20 18: 21 4: 9
84 32: 40 10: 21 9: 11
85 10: 17 1: 13 28: 31
86 21: 31 17: 21 12: 17
87 18: 25 10: 13 22: 29
88 10: 17 18: 21 21: 27
89 1: 9 13: 17 21: 27
90 21: 30 18: 21 4: 8
91 10: 17 14: 21 28: 31
92 18: 27 11: 21 30: 33
93 1: 8 1: 13 1: 4
94 28: 40 33: 40 18: 20
95 10: 17 18: 21 32: 40
96 1: 10 18: 21 5: 9
97 29: 40 22: 32 18: 20
98 18: 28 1: 4 34: 40
99 22: 30 22: 26 4: 8
100 31: 40 22: 31 9: 11
101 31: 40 32: 36 12: 17
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 27 21: 29
105 31: 40 11: 16 4: 8
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 1: 9 18: 21 21: 27
112 1: 10 22: 24 33: 40
113 20: 30 22: 27 35: 40
114 12: 21 22: 26 4: 9
115 22: 30 27: 31 4: 8
116 1: 12 22: 29 10: 12
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 11: 17 1: 12 18: 20
123 1: 10 22: 29 28: 32
124 22: 31 37: 40 4: 8
125 31: 40 22: 31 30: 33
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 11: 20 18: 21 13: 17
129 21: 31 10: 21 9: 11
130 21: 30 5: 9 12: 17
131 1: 10 30: 34 5: 9
132 22: 30 22: 31 9: 11
133 9: 20 9: 13 5: 9
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 28: 32 21: 29
137 20: 28 28: 32 21: 29
138 31: 40 1: 5 12: 17
139 31: 40 27: 31 4: 8
140 1: 10 14: 17 5: 9
141 1: 10 25: 29 33: 40
142 1: 10 1: 6 13: 17
143 31: 40 28: 31 34: 40
144 1: 10 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 22: 31 32: 36 4: 8
147 31: 40 32: 40 9: 11
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 12: 21 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 11: 19 22: 24 21: 27
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 13: 21 26: 29 13: 17
161 1: 10 30: 40 1: 4
162 11: 20 13: 17 13: 17
163 32: 40 36: 40 4: 8
164 12: 21 30: 40 10: 12
165 12: 21 35: 40 13: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 13: 21 22: 25 13: 17
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 32: 40 32: 35 4: 8
177 22: 31 32: 40 1: 3
178 1: 10 35: 40 5: 9
179 11: 21 33: 40 5: 9
180 22: 30 32: 40 9: 11
181 1: 11 35: 40 13: 17
182 22: 30 36: 40 12: 17
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 12: 21 27: 29 4: 9
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 11: 15 35: 40
190 20: 29 36: 40 34: 40
191 31: 40 22: 26 4: 8
192 11: 21 30: 32 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10617
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14843.139044 -14907.822585 -14907.822585 1.786953 -3.393448 27.917880
scf: 2 -13366.871275 -14438.002027 -14438.002027 3.179383 -2.474625 80.737336
scf: 3 -15091.026063 -14943.028095 -14943.028095 3.330267 -5.002031 10.738831
scf: 4 -14944.741086 -14943.914261 -14943.914261 0.070975 -5.039110 8.331639
scf: 5 -14945.833598 -14945.272686 -14945.272686 0.248989 -3.332780 1.213351
scf: 6 -14945.417636 -14945.380035 -14945.380035 0.050043 -3.517950 1.189543
scf: 7 -14833.057815 -14908.399367 -14908.399367 1.785977 -3.417657 27.770003
scf: 8 -14943.623959 -14945.384969 -14945.384969 1.786051 -3.525295 1.210667
scf: 9 -14945.396402 -14945.391447 -14945.391447 0.003336 -3.536391 1.155889
scf: 10 -14945.399378 -14945.395512 -14945.395512 0.002216 -3.539131 1.065892
scf: 11 -14941.568930 -14944.230111 -14944.238474 0.334783 -3.390879 5.131922
scf: 12 -14945.121826 -14945.403078 -14945.403078 0.333783 -3.539213 0.864778
scf: 13 -14945.408428 -14945.405807 -14945.405807 0.002302 -3.538563 0.777212
scf: 14 -14945.407573 -14945.406697 -14945.406697 0.000830 -3.538564 0.744519
scf: 15 -14836.191276 -14909.315369 -14909.315488 1.766953 -3.402810 27.389707
scf: 16 -14944.109214 -14945.406455 -14945.406455 1.767017 -3.537724 0.756873
scf: 17 -14945.405956 -14945.406230 -14945.406230 0.000706 -3.535079 0.770616
scf: 18 -14945.407291 -14945.406762 -14945.406762 0.000525 -3.534630 0.751582
scf: 19 -14835.366905 -14909.042614 -14909.042620 1.772693 -3.406301 27.465417
scf: 20 -14944.126493 -14945.407125 -14945.407125 1.772613 -3.534584 0.738307
scf: 21 -14945.407090 -14945.407107 -14945.407107 0.000022 -3.534479 0.738905
scf: 22 -14945.408204 -14945.407658 -14945.407658 0.000641 -3.534684 0.718687
scf: 23 -14834.494097 -14908.740112 -14908.740112 1.779892 -3.412978 27.608483
scf: 24 -14944.127838 -14945.407298 -14945.407298 1.779975 -3.534500 0.732155
scf: 25 -14945.407686 -14945.407492 -14945.407492 0.000279 -3.534503 0.725394
scf: 26 -14945.408233 -14945.407864 -14945.407864 0.000453 -3.534684 0.711690
scf: 27 -14834.589929 -14908.771535 -14908.771535 1.776471 -3.424396 27.526166
scf: 28 -14944.151191 -14945.407870 -14945.407870 1.776463 -3.534624 0.711949
scf: 29 -14945.408866 -14945.408370 -14945.408370 0.000765 -3.464094 0.693783
scf: 30 -14945.406640 -14945.407509 -14945.407509 0.001276 -3.534430 0.724640
scf: 31 -14834.204323 -14908.647746 -14908.647746 1.779080 -3.441001 27.555019
scf: 32 -14944.155176 -14945.408004 -14945.408004 1.778959 -3.534839 0.707287
scf: 33 -14945.413161 -14945.410631 -14945.410631 0.005266 -3.484109 0.609703
scf: 34 -14945.411170 -14945.410901 -14945.410901 0.000739 -3.484362 0.599265
scf: 35 -14834.520876 -14908.706933 -14908.706933 1.776793 -3.443887 27.523621
scf: 36 -14944.183522 -14945.408661 -14945.408661 1.777444 -3.464694 0.682744
scf: 37 -14945.407297 -14945.407982 -14945.407982 0.001088 -3.534902 0.706669
scf: 38 -14945.406413 -14945.407201 -14945.407201 0.001092 -3.534327 0.733443
scf: 39 -14834.240598 -14908.663971 -14908.663971 1.778367 -3.444538 27.541611
scf: 40 -14944.125922 -14945.407284 -14945.407284 1.778348 -3.534427 0.730695
scf: 41 -14945.408475 -14945.407881 -14945.407881 0.000825 -3.534935 0.710299
scf: 42 -14945.408690 -14945.408287 -14945.408287 0.000617 -3.464526 0.696168
scf: 43 -14834.235580 -14908.648600 -14908.648600 1.778223 -3.444738 27.548325
scf: 44 -14944.164033 -14945.408216 -14945.408216 1.778241 -3.464481 0.698650
scf: 45 -14945.408604 -14945.408410 -14945.408410 0.000305 -3.464708 0.691912
scf: 46 -14945.409484 -14945.408949 -14945.408949 0.000921 -3.465194 0.672709
scf: 47 -14834.296908 -14908.660367 -14908.660367 1.777678 -3.445630 27.540315
scf: 48 -14944.191938 -14945.408868 -14945.408868 1.777699 -3.465116 0.675596
scf: 49 -14945.409472 -14945.409171 -14945.409171 0.000555 -3.465384 0.664628
scf: 50 -14945.409945 -14945.409559 -14945.409559 0.000766 -3.465745 0.650408
scf: 51 -14834.345483 -14908.668128 -14908.668128 1.777531 -3.445895 27.537776
scf: 52 -14944.217128 -14945.409440 -14945.409440 1.777564 -3.465630 0.654777
scf: 53 -14945.410172 -14945.409807 -14945.409807 0.000768 -3.501348 0.641172
scf: 54 -14945.409008 -14945.409409 -14945.409409 0.000830 -3.465603 0.655930
scf: 55 -14834.362645 -14908.675923 -14908.675923 1.777473 -3.446268 27.533973
scf: 56 -14944.227189 -14945.409662 -14945.409662 1.777402 -3.465839 0.646566
scf: 57 -14945.410290 -14945.409977 -14945.409977 0.000688 -3.501512 0.634811
scf: 58 -14945.409542 -14945.409760 -14945.409760 0.000480 -3.501306 0.642947
scf: 59 -14834.408797 -14908.686374 -14908.686374 1.777262 -3.445746 27.530080
scf: 60 -14944.251959 -14945.410201 -14945.410201 1.777132 -3.484038 0.626358
mix: Pulay -- inversion failed, > SVD [rank/size] 1 / 2
scf: 61 -14945.410942 -14945.410573 -14945.410573 0.000925 -3.484399 0.612165
scf: 62 -14945.411313 -14945.410944 -14945.410944 0.001010 -3.484765 0.597797
scf: 63 -14834.442205 -14908.680201 -14908.680201 1.776969 -3.445944 27.532378
scf: 64 -14944.274025 -14945.410670 -14945.410670 1.777059 -3.484496 0.608413
scf: 65 -14945.409234 -14945.409956 -14945.409956 0.001747 -3.501497 0.635661
scf: 66 -14945.410378 -14945.410167 -14945.410167 0.000488 -3.484012 0.627702
scf: 67 -14834.439761 -14908.690888 -14908.690888 1.777065 -3.445971 27.527198
scf: 68 -14944.280272 -14945.410799 -14945.410799 1.776866 -3.484628 0.603515
scf: 69 -14945.410736 -14945.410767 -14945.410767 0.000087 -3.484596 0.604722
scf: 70 -14945.411330 -14945.411049 -14945.411049 0.000795 -3.484875 0.593717
scf: 71 -14834.545378 -14908.712988 -14908.712988 1.776459 -3.446271 27.516134
scf: 72 -14944.314184 -14945.411484 -14945.411484 1.776305 -3.483099 0.576595
scf: 73 -14945.412850 -14945.412171 -14945.412171 0.002446 -3.480760 0.549028
scf: 74 -14945.411132 -14945.411654 -14945.411654 0.001879 -3.482166 0.569810
scf: 75 -14834.629490 -14908.731649 -14908.731649 1.775882 -3.447086 27.504852
scf: 76 -14944.322318 -14945.411641 -14945.411641 1.775887 -3.482152 0.570340
scf: 77 -14945.412142 -14945.411892 -14945.411892 0.000879 -3.481301 0.560306
scf: 78 -14945.412334 -14945.412113 -14945.412113 0.000822 -3.480975 0.551381
scf: 79 -14834.744493 -14908.762593 -14908.762593 1.775156 -3.447382 27.489181
scf: 80 -14944.299662 -14945.411182 -14945.411182 1.775508 -3.485001 0.588578
scf: 81 -14945.410297 -14945.410741 -14945.410741 0.001259 -3.484559 0.605819
scf: 82 -14945.411535 -14945.411139 -14945.411139 0.001129 -3.484954 0.590259
scf: 83 -14834.553177 -14908.714165 -14908.714165 1.776497 -3.446081 27.517161
scf: 84 -14944.314431 -14945.411488 -14945.411488 1.776372 -3.483097 0.576447
scf: 85 -14945.413722 -14945.412618 -14945.412618 0.004268 -3.479769 0.530858
scf: 86 -14945.412001 -14945.412310 -14945.412310 0.001290 -3.480486 0.543387
scf: 87 -14834.674839 -14908.736012 -14908.736012 1.775633 -3.446487 27.505340
scf: 88 -14944.357289 -14945.412313 -14945.412313 1.775631 -3.480489 0.543242
scf: 89 -14945.412854 -14945.412584 -14945.412584 0.001130 -3.479802 0.532176
scf: 90 -14945.412113 -14945.412349 -14945.412349 0.000984 -3.480388 0.541799
scf: 91 -14834.835219 -14908.788904 -14908.788904 1.774728 -3.447829 27.476615
scf: 92 -14944.440711 -14945.413789 -14945.413789 1.773996 -3.476956 0.482500
scf: 93 -14945.412311 -14945.413056 -14945.413056 0.003928 -3.478697 0.512779
scf: 94 -14945.413274 -14945.413165 -14945.413165 0.000540 -3.478428 0.508288
scf: 95 -14835.017094 -14908.835570 -14908.835570 1.773413 -3.449028 27.450116
scf: 96 -14944.419763 -14945.413425 -14945.413425 1.773274 -3.477816 0.497554
scf: 97 -14945.414290 -14945.413859 -14945.413859 0.002458 -3.476805 0.479554
scf: 98 -14945.413404 -14945.413632 -14945.413632 0.001315 -3.477328 0.488944
scf: 99 -14835.084679 -14908.849514 -14908.849514 1.773138 -3.449444 27.444564
scf: 100 -14944.437085 -14945.413719 -14945.413719 1.773088 -3.477131 0.485362
scf: 101 -14945.414513 -14945.414118 -14945.414118 0.002406 -3.476231 0.468810
scf: 102 -14945.413902 -14945.414010 -14945.414010 0.000672 -3.476468 0.473288
scf: 103 -14835.260114 -14908.901048 -14908.901048 1.771798 -3.449973 27.417442
scf: 104 -14944.490365 -14945.414580 -14945.414580 1.771406 -3.475232 0.449711
scf: 105 -14945.414351 -14945.414465 -14945.414466 0.000788 -3.475463 0.454421
scf: 106 -14945.414792 -14945.414629 -14945.414629 0.001130 -3.475108 0.447676
scf: 107 -14835.655690 -14909.021005 -14909.021006 1.769035 -3.451636 27.356981
scf: 108 -14944.466480 -14945.414181 -14945.414181 1.769352 -3.476112 0.466201
scf: 109 -14945.412705 -14945.413449 -14945.413449 0.004297 -3.477868 0.496592
scf: 110 -14945.411143 -14945.412310 -14945.412310 0.005309 -3.480838 0.543735
scf: 111 -14835.152283 -14908.895397 -14908.895397 1.772848 -3.448939 27.423881
scf: 112 -14944.460416 -14945.414100 -14945.414100 1.771902 -3.476301 0.469540
scf: 113 -14945.414485 -14945.414293 -14945.414293 0.001237 -3.475855 0.461529
scf: 114 -14945.412691 -14945.413500 -14945.413500 0.004748 -3.477743 0.494566
scf: 115 -14835.306674 -14908.926084 -14908.926084 1.771809 -3.449720 27.408500
scf: 116 -14944.445485 -14945.413849 -14945.413849 1.771605 -3.476895 0.480009
scf: 117 -14945.415082 -14945.414470 -14945.414470 0.003948 -3.475464 0.454179
scf: 118 -14945.410114 -14945.412344 -14945.412344 0.011354 -3.480621 0.542559
scf: 119 -14835.317285 -14908.949895 -14908.949895 1.771935 -3.450327 27.395821
scf: 120 -14944.528925 -14945.415164 -14945.415164 1.770202 -3.474012 0.425690
scf: 121 -14945.423295 -14945.421525 -14945.422053 0.057974 -3.467525 0.068326
scf: 122 -14945.404358 -14945.415217 -14945.415218 0.057556 -3.473897 0.423498
scf: 123 -14835.103019 -14908.823338 -14908.823338 1.773590 -3.445739 27.471664
scf: 124 -14944.543607 -14945.415394 -14945.415395 1.773430 -3.473520 0.416312
scf: 125 -14945.415469 -14945.415431 -14945.415433 0.000300 -3.473450 0.414787
scf: 126 -14945.414254 -14945.414848 -14945.414848 0.004472 -3.474580 0.438768
scf: 127 -14836.065761 -14909.153587 -14909.153594 1.766203 -3.454029 27.293255
scf: 128 -14945.215473 -14945.421166 -14945.421563 1.752465 -3.467902 0.124596
scf: 129 -14945.404718 -14945.414643 -14945.414643 0.055958 -3.475011 0.447292
scf: 130 -14945.414114 -14945.414379 -14945.414379 0.001795 -3.475581 0.458293
scf: 131 -14837.142873 -14909.523606 -14909.523757 1.757428 -3.457069 27.123679
scf: 132 -14944.584392 -14945.415886 -14945.415889 1.756128 -3.472674 0.396280
scf: 133 -14945.180809 -14945.353311 -14945.356428 0.109354 -3.465694 1.164885
scf: 134 -14945.368471 -14945.415867 -14945.415870 0.109506 -3.472630 0.396966
scf: 135 -14945.418126 -14945.417022 -14945.417039 0.010095 -3.471264 0.350172
scf: 136 -14945.287819 -14945.384914 -14945.387435 0.089007 -3.467087 0.848168
scf: 137 -14945.431714 -14945.413336 -14945.414907 0.028621 -3.467720 0.388667
scf: 138 -14945.404716 -14945.418882 -14945.418982 0.054679 -3.470256 0.270658
scf: 139 -14945.418799 -14945.418841 -14945.418938 0.000338 -3.470558 0.272717
scf: 140 -14945.422041 -14945.420660 -14945.420956 0.015275 -3.470290 0.168837
scf: 141 -14945.385992 -14945.411620 -14945.413281 0.041500 -3.468629 0.430928
scf: 142 -14945.413607 -14945.420739 -14945.421049 0.040834 -3.470004 0.162034
scf: 143 -14945.421890 -14945.421511 -14945.422038 0.009545 -3.469190 0.066554
scf: 144 -14945.421425 -14945.421563 -14945.422243 0.005440 -3.469033 0.002154
scf: 145 -14945.421598 -14945.421584 -14945.422235 0.000907 -3.469330 0.013483
scf: 146 -14945.421515 -14945.421555 -14945.422243 0.001292 -3.469789 0.003033
scf: 147 -14945.421571 -14945.421564 -14945.422243 0.000264 -3.469913 0.001258
scf: 148 -14945.421562 -14945.421563 -14945.422243 0.000043 -3.470240 0.000443
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000433533
max |H_out - H_in| (eV) : 0.0004431131
SCF cycle converged after 148 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14945.4216
siesta: Atomic forces (eV/Ang):
1 -1.707379 -0.975271 -0.852796
2 0.526462 -0.294236 -0.747988
3 1.057200 0.835861 0.526780
4 -0.477380 1.786781 -0.594162
5 -0.526680 -1.340155 0.674017
6 1.342599 -0.293174 -0.844051
7 0.862445 0.421713 1.980130
8 0.024774 -0.413997 -0.330295
9 1.291942 -0.980352 -0.215428
10 0.775834 0.194239 0.066465
11 0.144324 -1.944161 -0.266179
12 -0.325873 -0.004134 0.316478
13 -1.007629 1.718967 0.532848
14 -0.287547 -0.660972 0.901838
15 0.545226 -0.529116 -0.049448
16 -0.336498 -1.256096 -1.297333
17 1.625077 -0.533588 1.244191
18 -0.943600 1.281265 0.162241
19 -0.621967 -0.543834 1.324193
20 -0.311075 0.474630 -0.533599
21 0.615033 0.183857 -0.710839
22 -0.135558 1.324827 -0.034837
23 -0.183383 0.776040 -1.231929
24 0.118918 -1.121761 0.397863
25 -0.247964 -1.627749 1.471258
26 -0.363556 0.208153 0.148790
27 1.327545 0.150127 -0.345467
28 0.499944 -0.985535 -0.703957
29 -0.009953 0.883552 1.347862
30 0.085895 1.226208 0.309240
31 -2.343333 1.922471 -1.334708
32 -0.395347 -0.516084 -0.308153
33 -0.501683 -0.516564 -0.046061
34 -0.796133 -0.916340 1.279833
35 -0.023283 1.434664 0.803535
36 1.010227 0.752377 -0.800505
37 1.808206 0.066239 -0.522093
38 -0.418601 -0.915556 -1.120220
39 -0.167703 0.594261 -0.159458
40 0.694425 1.015061 -0.317952
41 -0.347740 -0.271144 -0.003923
42 -0.437678 -0.841912 -0.186875
43 0.289714 0.858081 1.511835
44 -0.345249 0.997763 -0.876441
45 -0.054053 -0.863664 -1.043948
46 0.459447 0.796401 -2.402453
47 -0.418872 -0.178785 1.126931
48 0.403189 -0.642186 0.091876
49 -0.885514 0.109641 2.302583
50 -0.469764 -0.375848 0.074136
51 0.065547 0.695657 -0.996417
52 -0.993114 -0.952124 1.826056
53 0.199094 -0.353410 -1.635124
54 0.174421 0.370361 -0.154306
55 1.407535 -0.330113 1.409074
56 -1.133235 -0.306694 -0.106034
57 -0.131922 0.345042 -1.384661
58 -1.435098 -0.058593 -2.832146
59 0.052546 0.901712 0.429290
60 -0.089877 0.085009 0.334987
61 -1.187041 -0.869065 0.403643
62 -1.873151 1.857163 -0.522178
63 0.244326 1.306310 0.054870
64 0.085859 0.458892 1.545133
65 -0.226883 -0.865964 0.124517
66 1.447357 -1.034812 0.118999
67 -1.645915 0.523523 -1.756421
68 1.286888 0.236706 -0.374637
69 0.090776 0.244047 0.672766
70 -1.027992 0.154178 -0.824474
71 1.088861 -0.084266 -1.910935
72 0.834522 0.203175 0.296987
73 -0.164328 1.068870 -2.421367
74 -0.023274 -0.527590 -0.070997
75 -0.596593 3.283301 0.608929
76 -0.845450 0.002798 1.247213
77 0.179627 -0.810839 0.518341
78 0.704311 0.223627 -1.166280
79 1.604018 -2.102369 -0.595598
80 -0.263072 -2.232706 1.026462
81 0.063049 -0.566817 1.457820
82 1.332752 -1.593911 -1.235638
83 0.084844 0.157248 2.622309
84 -0.726543 0.245822 0.913516
85 0.670137 -1.536324 0.765039
86 -1.579246 0.768719 0.073412
87 -0.553901 -0.305965 -1.930935
88 -0.583844 0.697667 -0.451977
89 -0.526738 -0.576966 0.832189
90 1.034226 -0.361834 0.399630
91 0.994879 0.301736 2.002575
92 -0.500715 0.371754 -1.087427
93 -0.361539 -0.742114 -0.378127
94 0.874103 -1.575952 0.509163
95 0.157501 1.826802 0.545359
96 1.315771 0.994580 0.269402
----------------------------------------
Tot -0.059091 0.007233 -0.114176
----------------------------------------
Max 3.283301
Res 0.962626 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 3.283301 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -22.34 10.48 -4.06 0.95 -11.72 4.87
(Free)E + p*V (eV/cell) -14942.2432
Target enthalpy (eV/cell) -14945.4222
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.846 1.890 1.685 1.758 1.513
4 6.865 1.922 1.604 1.670 1.670
7 6.863 1.903 1.777 1.650 1.533
10 6.873 1.906 1.555 1.520 1.893
13 6.854 1.884 1.634 1.651 1.685
16 6.730 1.922 1.733 1.494 1.581
19 6.901 1.901 1.816 1.533 1.651
22 6.918 1.914 1.487 1.527 1.989
25 6.825 1.915 1.594 1.895 1.421
28 6.833 1.899 1.640 1.453 1.842
31 6.804 1.893 1.565 1.671 1.675
34 6.806 1.912 1.660 1.676 1.558
37 6.901 1.881 1.846 1.543 1.630
40 6.900 1.901 1.722 1.478 1.800
43 6.834 1.901 1.442 1.617 1.874
46 6.813 1.928 1.467 1.674 1.744
49 6.844 1.916 1.450 1.588 1.890
52 6.850 1.898 1.564 1.498 1.890
55 6.880 1.931 1.596 1.853 1.501
58 6.845 1.903 1.533 1.804 1.605
61 6.836 1.899 1.472 1.825 1.639
64 6.891 1.908 1.573 1.959 1.451
67 6.817 1.932 1.908 1.388 1.589
70 6.797 1.925 1.844 1.438 1.591
73 6.787 1.922 1.911 1.350 1.604
76 6.875 1.889 1.815 1.486 1.685
79 6.781 1.902 1.640 1.654 1.585
82 6.771 1.924 1.570 1.776 1.501
85 6.766 1.915 1.565 1.591 1.694
88 6.929 1.897 1.648 1.824 1.559
91 6.876 1.892 1.581 1.589 1.814
94 6.815 1.913 1.550 1.497 1.855
Species: H_lyp
Atom Qatom Qorb
1s
2 0.601 0.601
3 0.482 0.482
5 0.578 0.578
6 0.538 0.538
8 0.572 0.572
9 0.579 0.579
11 0.597 0.597
12 0.587 0.587
14 0.577 0.577
15 0.498 0.498
17 0.592 0.592
18 0.637 0.637
20 0.568 0.568
21 0.533 0.533
23 0.597 0.597
24 0.583 0.583
26 0.529 0.529
27 0.613 0.613
29 0.602 0.602
30 0.531 0.531
32 0.574 0.574
33 0.655 0.655
35 0.580 0.580
36 0.560 0.560
38 0.521 0.521
39 0.559 0.559
41 0.547 0.547
42 0.581 0.581
44 0.577 0.577
45 0.613 0.613
47 0.576 0.576
48 0.590 0.590
50 0.559 0.559
51 0.565 0.565
53 0.550 0.550
54 0.521 0.521
56 0.587 0.587
57 0.557 0.557
59 0.639 0.639
60 0.565 0.565
62 0.628 0.628
63 0.481 0.481
65 0.624 0.624
66 0.577 0.577
68 0.588 0.588
69 0.609 0.609
71 0.624 0.624
72 0.609 0.609
74 0.662 0.662
75 0.608 0.608
77 0.525 0.525
78 0.529 0.529
80 0.683 0.683
81 0.532 0.532
83 0.643 0.643
84 0.594 0.594
86 0.612 0.612
87 0.602 0.602
89 0.555 0.555
90 0.578 0.578
92 0.555 0.555
93 0.600 0.600
95 0.607 0.607
96 0.583 0.583
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 5
====================================
outcoor: Atomic coordinates (Ang):
0.26116256 3.70532967 6.49524290 1 1 O_lyp
-0.68443492 4.13412140 6.87210174 2 2 H_lyp
-0.10534883 2.89306441 5.78533112 2 3 H_lyp
1.48051564 6.95072044 7.10751366 1 4 O_lyp
2.10807660 7.86907553 6.91163484 2 5 H_lyp
0.85616197 7.31320600 7.99302504 2 6 H_lyp
6.87485697 0.22764537 6.59044694 1 7 O_lyp
7.59913841 0.08193633 7.40844230 2 8 H_lyp
6.07275778 0.86734440 7.06016934 2 9 H_lyp
6.02429389 9.55196833 1.18660897 1 10 O_lyp
6.13942319 10.51999661 0.63924703 2 11 H_lyp
6.56205982 9.78065709 2.19775746 2 12 H_lyp
6.01797490 7.21538041 2.71458521 1 13 O_lyp
6.23361444 8.03340218 1.97602980 2 14 H_lyp
5.13682385 7.64755980 3.28765064 2 15 H_lyp
0.13220646 4.09048896 2.56634103 1 16 O_lyp
-0.72016314 4.44179180 3.16206901 2 17 H_lyp
-0.33703185 3.57404301 1.70943810 2 18 H_lyp
0.59866199 7.05890369 4.22162284 1 19 O_lyp
0.82827386 6.96955016 5.33848640 2 20 H_lyp
-0.37406842 6.45153369 4.12912738 2 21 H_lyp
5.50288294 1.88775468 8.77784078 1 22 O_lyp
5.44192582 1.92531220 9.92701077 2 23 H_lyp
5.52260972 2.99364950 8.54418885 2 24 H_lyp
3.86057932 7.06445572 4.79806871 1 25 O_lyp
4.30002881 6.02361604 4.76916940 2 26 H_lyp
2.81984043 6.87948656 5.15210468 2 27 H_lyp
9.19733755 5.10905102 9.03967929 1 28 O_lyp
8.94817398 4.94276899 7.96429729 2 29 H_lyp
9.74720338 4.14927373 9.33004587 2 30 H_lyp
5.40134104 0.61015379 5.10897979 1 31 O_lyp
4.51257307 0.63975706 5.73583472 2 32 H_lyp
5.41604921 1.52386272 4.52459635 2 33 H_lyp
5.63318614 2.27304259 1.54641651 1 34 O_lyp
6.02184678 1.32765096 2.03891665 2 35 H_lyp
4.67179071 2.43900128 2.07842079 2 36 H_lyp
7.02970995 0.67502990 3.59278957 1 37 O_lyp
6.90054355 0.69777392 4.73847807 2 38 H_lyp
7.95408475 0.09757950 3.48787024 2 39 H_lyp
5.61853053 5.29024963 8.64910560 1 40 O_lyp
5.78781368 6.08983874 7.83720194 2 41 H_lyp
6.15155639 5.72658505 9.54584003 2 42 H_lyp
2.25858922 5.26537417 2.66760657 1 43 O_lyp
2.35953282 4.35447397 3.32698977 2 44 H_lyp
1.91032879 6.04091001 3.39146084 2 45 H_lyp
7.28850536 6.29846871 0.82935201 1 46 O_lyp
7.96546715 6.05320338 -0.03751787 2 47 H_lyp
7.02515413 7.36760146 0.66320813 2 48 H_lyp
3.08064821 0.60913153 6.10464448 1 49 O_lyp
2.93931177 1.65004914 6.54305013 2 50 H_lyp
3.01425824 -0.05186841 7.01204789 2 51 H_lyp
0.36340737 7.72300240 9.59235040 1 52 O_lyp
0.53896606 7.88056343 10.69313487 2 53 H_lyp
0.04767495 6.62367524 9.56531022 2 54 H_lyp
3.12500541 8.15237119 9.45264241 1 55 O_lyp
4.19424314 8.48794438 9.54302268 2 56 H_lyp
3.12279665 7.16604970 10.04339284 2 57 H_lyp
3.33000592 5.15446531 0.21405222 1 58 O_lyp
2.82788257 4.20303635 0.02205637 2 59 H_lyp
4.22523342 5.14151588 -0.48818670 2 60 H_lyp
8.21738859 5.76040133 3.31269329 1 61 O_lyp
8.16207586 4.79982291 2.73447675 2 62 H_lyp
7.12980967 6.10145951 3.15786404 2 63 H_lyp
4.79143767 4.92339668 1.94112450 1 64 O_lyp
5.37919945 5.84424263 1.95699974 2 65 H_lyp
3.71346029 5.32673624 1.98334124 2 66 H_lyp
3.21443835 8.60097034 3.11606247 1 67 O_lyp
2.24430746 8.21482296 3.54181264 2 68 H_lyp
3.11699213 8.39940495 2.02193578 2 69 H_lyp
0.89458347 2.76151487 0.29051154 1 70 O_lyp
0.79388964 2.70605362 1.41748104 2 71 H_lyp
-0.05982264 2.27975296 -0.04902588 2 72 H_lyp
8.93811985 0.91990646 1.28945511 1 73 O_lyp
9.58067580 0.86035292 0.40849875 2 74 H_lyp
9.60739570 0.54218244 2.07060536 2 75 H_lyp
2.71010869 3.22491227 7.14950325 1 76 O_lyp
1.76113486 3.80753818 6.84107346 2 77 H_lyp
2.53730856 3.10078640 8.25559720 2 78 H_lyp
9.08381411 9.09114142 2.94956116 1 79 O_lyp
9.86472859 9.38960605 2.21537663 2 80 H_lyp
9.59497730 8.19898002 3.34610784 2 81 H_lyp
0.66727376 1.60508933 3.22204764 1 82 O_lyp
0.54102225 2.55401524 2.64444947 2 83 H_lyp
1.69651089 1.26277784 2.95478326 2 84 H_lyp
2.29488832 3.25550570 4.42592774 1 85 O_lyp
3.08114927 2.44399341 4.37410539 2 86 H_lyp
2.59122102 3.78184589 5.37156712 2 87 H_lyp
5.96900865 7.37754737 6.58060728 1 88 O_lyp
6.47508766 8.36984735 6.31813598 2 89 H_lyp
4.99433244 7.47156382 5.99667702 2 90 H_lyp
8.57000466 9.58378293 8.53488702 1 91 O_lyp
9.17850828 8.80465147 9.12307729 2 92 H_lyp
8.23919892 10.28912519 9.31429760 2 93 H_lyp
4.32188635 4.34216495 5.19553113 1 94 O_lyp
4.61268506 3.47837354 4.53017731 2 95 H_lyp
3.87921328 3.81357230 6.11408863 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 5
<sparsity:sparsity for geom step 5
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 7>
<dData1D:(new from dSpData1D) n=125, refcount: 1>
refcount: 1>
new_DM -- step: 6
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 5
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 9>
<dData2D:(temp array for extrapolation) n=125 m=1, refcount: 1>
refcount: 1>
Note: For starting DM, Qtot, Tr[D*S] = 256.00000000 256.40390432
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 11: 20 13: 17 13: 17
4 11: 20 1: 12 10: 12
5 31: 40 1: 5 12: 17
6 32: 40 32: 40 1: 3
7 1: 10 1: 12 18: 20
8 1: 10 1: 8 21: 27
9 18: 26 1: 5 22: 29
10 1: 10 9: 12 21: 27
11 12: 19 30: 34 22: 27
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 21: 30 1: 9 9: 11
16 31: 40 6: 9 12: 17
17 27: 40 1: 9 18: 21
18 21: 30 1: 4 12: 17
19 1: 8 1: 7 5: 9
20 1: 10 1: 12 10: 12
21 11: 20 1: 7 13: 17
22 21: 30 5: 9 12: 17
23 11: 17 8: 12 21: 27
24 27: 40 5: 9 22: 29
25 11: 17 1: 7 21: 27
26 18: 26 6: 9 22: 29
27 1: 9 1: 13 28: 32
28 12: 21 22: 29 1: 3
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 22: 30 27: 31 4: 8
33 9: 20 1: 8 5: 9
34 31: 40 11: 21 1: 3
35 1: 8 8: 13 5: 9
36 31: 40 1: 9 9: 11
37 32: 40 10: 14 12: 17
38 11: 20 8: 12 13: 17
39 18: 24 10: 21 18: 21
40 25: 40 10: 15 21: 29
41 27: 40 1: 4 22: 29
42 21: 30 11: 21 1: 3
43 32: 40 1: 10 1: 3
44 32: 40 1: 5 4: 8
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 22: 26 12: 17
48 32: 40 6: 10 4: 8
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 32: 40 36: 40 4: 8
52 1: 10 13: 21 10: 12
53 21: 31 5: 10 4: 8
54 1: 10 13: 17 13: 17
55 25: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 10: 20 14: 17 4: 9
58 18: 24 10: 13 22: 29
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 21: 31 1: 10 1: 3
62 28: 40 11: 16 35: 40
63 1: 9 14: 17 33: 40
64 21: 31 1: 4 4: 8
65 1: 9 8: 13 33: 40
66 18: 26 1: 9 18: 21
67 10: 17 13: 21 18: 20
68 11: 20 13: 21 10: 12
69 32: 40 15: 21 12: 17
70 10: 20 14: 21 1: 3
71 1: 9 13: 21 18: 20
72 25: 40 16: 21 21: 29
73 18: 24 14: 21 22: 29
74 1: 9 13: 17 21: 27
75 22: 30 32: 35 12: 17
76 10: 17 14: 17 32: 40
77 18: 27 11: 16 34: 40
78 28: 40 17: 21 35: 40
79 1: 9 18: 21 33: 40
80 11: 19 22: 29 18: 20
81 10: 17 1: 13 28: 31
82 1: 9 14: 21 1: 4
83 22: 30 22: 26 4: 8
84 32: 40 10: 21 9: 11
85 1: 8 1: 13 1: 4
86 28: 40 33: 40 18: 20
87 10: 20 18: 21 4: 9
88 10: 17 18: 21 21: 27
89 18: 28 1: 4 34: 40
90 1: 11 22: 25 4: 9
91 22: 31 37: 40 4: 8
92 18: 27 11: 21 30: 33
93 1: 10 22: 29 28: 32
94 18: 27 17: 21 34: 40
95 10: 17 18: 21 32: 40
96 11: 20 18: 21 13: 17
97 20: 30 22: 27 35: 40
98 31: 40 11: 16 4: 8
99 31: 40 22: 26 4: 8
100 1: 12 22: 29 10: 12
101 31: 40 32: 36 12: 17
102 1: 12 22: 25 13: 17
103 20: 28 22: 32 18: 20
104 29: 40 22: 27 21: 29
105 1: 10 1: 6 13: 17
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 1: 11 22: 29 1: 3
112 1: 10 22: 24 33: 40
113 29: 40 22: 32 18: 20
114 9: 20 9: 13 5: 9
115 31: 40 27: 31 4: 8
116 22: 30 22: 31 9: 11
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 10: 17 14: 21 28: 31
123 21: 30 18: 21 4: 8
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 1: 10 18: 21 13: 17
129 21: 31 10: 15 12: 17
130 1: 10 7: 12 13: 17
131 1: 11 26: 29 4: 9
132 13: 21 22: 29 10: 12
133 31: 40 22: 31 9: 11
134 22: 30 27: 31 12: 17
135 1: 10 22: 29 18: 20
136 29: 40 28: 32 21: 29
137 20: 28 28: 32 21: 29
138 12: 21 22: 26 4: 9
139 11: 17 1: 12 18: 20
140 11: 19 22: 24 21: 27
141 21: 31 16: 21 12: 17
142 31: 40 22: 26 12: 17
143 31: 40 28: 31 34: 40
144 13: 21 26: 29 13: 17
145 11: 21 30: 40 1: 4
146 1: 10 30: 34 5: 9
147 31: 40 32: 40 9: 11
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 12: 21 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 13: 21 22: 25 13: 17
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 32: 40 32: 35 4: 8
161 22: 31 32: 40 1: 3
162 22: 31 32: 36 4: 8
163 11: 21 33: 40 5: 9
164 12: 21 30: 40 10: 12
165 22: 30 36: 40 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 12: 21 27: 29 4: 9
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 1: 9 14: 17 5: 9
177 1: 10 30: 40 1: 4
178 12: 21 35: 40 13: 17
179 1: 10 35: 40 5: 9
180 22: 30 32: 40 9: 11
181 1: 11 35: 40 13: 17
182 1: 9 18: 21 21: 27
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 1: 9 18: 21 5: 9
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 21: 31 10: 21 9: 11
190 20: 29 36: 40 34: 40
191 31: 40 17: 21 4: 8
192 11: 21 30: 32 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10614
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14941.369179 -14945.972394 -14945.972394 0.099565 -3.509994 0.499318
scf: 2 -14945.620177 -14945.926205 -14945.926206 0.049961 -3.167759 0.685669
scf: 3 -14946.131530 -14946.069886 -14946.069886 0.043342 -3.167074 0.074282
scf: 4 -14946.072275 -14946.071295 -14946.071295 0.002341 -3.308623 0.035658
scf: 5 -14946.071936 -14946.071692 -14946.071692 0.001200 -3.311733 0.020219
scf: 6 -14946.071815 -14946.071756 -14946.071756 0.000209 -3.312930 0.018459
scf: 7 -14946.071864 -14946.071833 -14946.071833 0.000635 -3.315750 0.006381
scf: 8 -14946.071846 -14946.071840 -14946.071840 0.000060 -3.315832 0.005821
scf: 9 -14946.071860 -14946.071852 -14946.071852 0.000205 -3.315703 0.003326
scf: 10 -14946.071856 -14946.071854 -14946.071854 0.000065 -3.315625 0.002410
scf: 11 -14946.071856 -14946.071856 -14946.071856 0.000080 -3.315632 0.001747
scf: 12 -14946.071857 -14946.071857 -14946.071857 0.000051 -3.315833 0.001237
scf: 13 -14946.071857 -14946.071857 -14946.071857 0.000017 -3.315941 0.001071
scf: 14 -14946.071857 -14946.071857 -14946.071857 0.000042 -3.316118 0.000661
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000416389
max |H_out - H_in| (eV) : 0.0006606447
SCF cycle converged after 14 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14946.0719
siesta: Atomic forces (eV/Ang):
1 -1.094173 -0.659384 -0.532241
2 0.185312 -0.237954 -0.736209
3 0.790025 0.411607 0.133630
4 -0.545387 1.022830 -0.955865
5 -0.175303 -0.790875 0.611917
6 1.047865 -0.083653 -0.380840
7 0.907891 0.192765 1.351568
8 0.383812 -0.457121 0.127465
9 0.880371 -0.653926 0.005352
10 0.527235 -0.432632 -0.120379
11 0.208714 -1.444721 -0.528374
12 -0.090067 0.064526 0.662673
13 -0.621813 1.033452 0.557529
14 -0.225505 -0.271453 0.580983
15 0.117136 -0.263170 0.203378
16 0.317447 -1.188494 -1.083810
17 1.493484 -0.508111 1.529232
18 -1.229031 1.053784 -0.267013
19 -0.287524 -0.186474 0.782570
20 -0.231370 0.390182 -0.016201
21 0.162440 -0.100001 -0.699590
22 -0.095001 0.646821 -0.466550
23 -0.211358 0.861503 -0.678155
24 0.112246 -0.508743 0.318660
25 0.109930 -0.971435 1.288053
26 -0.184151 -0.308463 0.120028
27 0.773121 0.010833 -0.166143
28 0.257065 -0.412691 -0.392089
29 -0.100096 0.821341 0.977830
30 0.325255 0.762057 0.382943
31 -2.013727 1.442313 -1.188352
32 -0.806188 -0.512044 -0.051907
33 -0.480388 -0.062587 -0.357059
34 -0.482136 -0.519217 0.637068
35 0.107291 1.030233 1.121391
36 0.497671 0.845762 -0.476566
37 1.443618 0.349148 -0.888916
38 -0.346266 -0.923566 -0.735696
39 0.296399 0.275707 -0.171719
40 0.372071 0.457467 -0.411173
41 -0.259597 0.043794 -0.323237
42 -0.200027 -0.611469 0.223405
43 0.471185 0.862400 0.747325
44 -0.347945 0.566390 -0.513929
45 -0.244872 -0.494195 -0.626733
46 0.223545 0.360236 -1.777077
47 -0.029483 -0.265828 0.650501
48 0.282084 -0.104560 0.005517
49 -0.687425 -0.000451 1.498597
50 -0.557409 0.096088 0.297228
51 0.012865 0.324928 -0.464311
52 -0.981019 -0.469074 1.136326
53 0.298673 -0.311460 -0.986578
54 0.077595 -0.098714 -0.084603
55 0.747455 0.030113 1.018337
56 -0.504256 -0.146248 -0.050163
57 -0.101850 -0.161217 -1.052254
58 -1.694847 0.476827 -2.546726
59 -0.195792 0.364441 0.312627
60 0.233449 0.019972 0.093832
61 -0.654999 -0.387185 0.830632
62 -2.173387 1.450814 -0.910903
63 -0.175404 1.315524 -0.053893
64 0.384014 -0.135875 1.663920
65 0.033501 -0.432437 0.149508
66 1.070047 -0.822719 0.076714
67 -1.071460 0.840936 -1.325706
68 0.780669 0.023583 -0.163843
69 0.020558 0.108227 0.085527
70 -0.446209 0.444498 -1.183556
71 1.042037 -0.127605 -1.375270
72 0.352013 -0.009164 0.123948
73 -0.900740 1.364759 -2.401534
74 0.333434 -0.573386 -0.491626
75 -0.377473 3.593058 0.778751
76 -0.326676 -0.154014 0.730663
77 -0.218349 -0.549667 0.450656
78 0.564361 0.167940 -0.591173
79 0.761779 -1.867096 -0.197213
80 0.349961 -2.610192 0.739781
81 0.311194 -0.954244 1.554353
82 0.776177 -1.805868 -0.808568
83 0.060777 0.543111 2.385394
84 -0.110348 0.095772 0.759389
85 -0.107371 -1.349195 0.203779
86 -1.136709 0.304378 0.083749
87 -0.457195 -0.106426 -1.459059
88 -0.303770 0.182748 0.013041
89 -0.324343 -0.136017 0.619865
90 0.559505 -0.255077 0.067528
91 0.810769 0.310223 1.219501
92 -0.195177 -0.000088 -0.780014
93 -0.530924 -0.394302 0.029811
94 1.069272 -0.671597 0.486671
95 0.319352 1.336697 0.196500
96 1.155931 0.693762 0.682517
----------------------------------------
Tot -0.115938 0.091467 -0.164657
----------------------------------------
Max 3.593058
Res 0.781093 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 3.593058 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -43.72 -15.14 -29.42 2.13 -10.10 6.58
(Free)E + p*V (eV/cell) -14928.4383
Target enthalpy (eV/cell) -14946.0719
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.857 1.888 1.684 1.757 1.527
4 6.877 1.914 1.616 1.676 1.670
7 6.871 1.898 1.785 1.658 1.530
10 6.878 1.900 1.569 1.514 1.895
13 6.865 1.881 1.645 1.649 1.690
16 6.742 1.915 1.741 1.496 1.590
19 6.910 1.895 1.825 1.537 1.653
22 6.924 1.907 1.501 1.526 1.991
25 6.837 1.909 1.601 1.902 1.425
28 6.844 1.894 1.649 1.454 1.847
31 6.813 1.888 1.574 1.671 1.680
34 6.820 1.906 1.659 1.694 1.561
37 6.910 1.876 1.853 1.546 1.635
40 6.908 1.896 1.728 1.471 1.813
43 6.844 1.895 1.435 1.629 1.886
46 6.824 1.921 1.473 1.681 1.749
49 6.855 1.909 1.443 1.602 1.901
52 6.863 1.893 1.563 1.508 1.899
55 6.891 1.923 1.598 1.857 1.513
58 6.855 1.897 1.550 1.806 1.602
61 6.845 1.895 1.476 1.834 1.641
64 6.905 1.900 1.584 1.981 1.439
67 6.829 1.925 1.914 1.393 1.597
70 6.807 1.918 1.852 1.437 1.600
73 6.792 1.914 1.910 1.349 1.619
76 6.887 1.884 1.824 1.490 1.689
79 6.788 1.898 1.635 1.656 1.599
82 6.782 1.918 1.572 1.781 1.512
85 6.778 1.908 1.567 1.597 1.706
88 6.936 1.892 1.655 1.834 1.554
91 6.883 1.888 1.575 1.604 1.815
94 6.826 1.908 1.569 1.492 1.857
Species: H_lyp
Atom Qatom Qorb
1s
2 0.592 0.592
3 0.479 0.479
5 0.572 0.572
6 0.535 0.535
8 0.568 0.568
9 0.575 0.575
11 0.592 0.592
12 0.578 0.578
14 0.576 0.576
15 0.496 0.496
17 0.589 0.589
18 0.632 0.632
20 0.562 0.562
21 0.528 0.528
23 0.591 0.591
24 0.574 0.574
26 0.525 0.525
27 0.607 0.607
29 0.590 0.590
30 0.526 0.526
32 0.570 0.570
33 0.647 0.647
35 0.577 0.577
36 0.554 0.554
38 0.521 0.521
39 0.557 0.557
41 0.542 0.542
42 0.575 0.575
44 0.572 0.572
45 0.607 0.607
47 0.570 0.570
48 0.584 0.584
50 0.554 0.554
51 0.559 0.559
53 0.546 0.546
54 0.518 0.518
56 0.580 0.580
57 0.550 0.550
59 0.632 0.632
60 0.561 0.561
62 0.627 0.627
63 0.478 0.478
65 0.621 0.621
66 0.575 0.575
68 0.582 0.582
69 0.601 0.601
71 0.617 0.617
72 0.602 0.602
74 0.654 0.654
75 0.607 0.607
77 0.523 0.523
78 0.526 0.526
80 0.680 0.680
81 0.526 0.526
83 0.637 0.637
84 0.588 0.588
86 0.606 0.606
87 0.597 0.597
89 0.549 0.549
90 0.572 0.572
92 0.550 0.550
93 0.595 0.595
95 0.599 0.599
96 0.580 0.580
mulliken: Qtot = 256.000
cgvc: Finished line minimization 1. Mean atomic displacement = 0.0671
====================================
Begin CG opt. move = 6
====================================
outcoor: Atomic coordinates (Ang):
0.24372869 3.69228397 6.48540665 1 1 O_lyp
-0.68761328 4.13158061 6.85519562 2 2 H_lyp
-0.08754866 2.89525899 5.78080923 2 3 H_lyp
1.46532267 6.96517217 7.07425133 1 4 O_lyp
2.11058882 7.85757923 6.92593173 2 5 H_lyp
0.87782160 7.31444305 7.99249102 2 6 H_lyp
6.90146014 0.22785000 6.61608301 1 7 O_lyp
7.61741969 0.06773909 7.42012663 2 8 H_lyp
6.08823382 0.85617505 7.06466921 2 9 H_lyp
6.03248970 9.52827024 1.17728149 1 10 O_lyp
6.14607548 10.48917088 0.61851537 2 11 H_lyp
6.56586166 9.78383391 2.22724551 2 12 H_lyp
6.00771054 7.23077541 2.73082375 1 13 O_lyp
6.22986923 8.03424818 1.98439221 2 14 H_lyp
5.13065331 7.64487741 3.29969762 2 15 H_lyp
0.15214291 4.05899475 2.53979283 1 16 O_lyp
-0.68233945 4.42917464 3.20980100 2 17 H_lyp
-0.37498101 3.59843929 1.69391077 2 18 H_lyp
0.59841502 7.06125244 4.23156311 1 19 O_lyp
0.82505403 6.97937293 5.35087612 2 20 H_lyp
-0.38066652 6.44198847 4.10837925 2 21 H_lyp
5.50089249 1.89369530 8.75557924 1 22 O_lyp
5.43540167 1.94935912 9.92096545 2 23 H_lyp
5.52583174 2.99141112 8.54997699 2 24 H_lyp
3.86923526 7.04916203 4.83043068 1 25 O_lyp
4.29970604 6.00474952 4.77209094 2 26 H_lyp
2.83072998 6.87824022 5.15109196 2 27 H_lyp
9.20057367 5.11002813 9.03692963 1 28 O_lyp
8.94248006 4.96398366 7.97957266 2 29 H_lyp
9.76227423 4.15980094 9.34409665 2 30 H_lyp
5.35195051 0.64238683 5.07727086 1 31 O_lyp
4.48238910 0.62529931 5.73970309 2 32 H_lyp
5.40330390 1.53006836 4.50897988 2 33 H_lyp
5.62432209 2.26755783 1.55336297 1 34 O_lyp
6.02917259 1.34618601 2.07585726 2 35 H_lyp
4.67598204 2.46462951 2.07045514 2 36 H_lyp
7.06335844 0.68894523 3.55764732 1 37 O_lyp
6.89040065 0.67260065 4.72974027 2 38 H_lyp
7.97086635 0.09987649 3.48176395 2 39 H_lyp
5.62196051 5.29030605 8.63855644 1 40 O_lyp
5.78236538 6.09960471 7.81847977 2 41 H_lyp
6.15105228 5.71348861 9.56102577 2 42 H_lyp
2.27466548 5.28945278 2.67462610 1 43 O_lyp
2.35064775 4.36079492 3.31931684 2 44 H_lyp
1.89983116 6.03575086 3.38157606 2 45 H_lyp
7.28961439 6.30158983 0.79145718 1 46 O_lyp
7.97274377 6.04259052 -0.02935355 2 47 H_lyp
7.03015503 7.37473085 0.66236545 2 48 H_lyp
3.06476810 0.60610131 6.13172056 1 49 O_lyp
2.92219342 1.66406393 6.55536333 2 50 H_lyp
3.01375366 -0.05113740 7.00925724 2 51 H_lyp
0.33759307 7.72022911 9.61136066 1 52 O_lyp
0.54927850 7.87419863 10.67871294 2 53 H_lyp
0.04641184 6.60868610 9.56248782 2 54 H_lyp
3.13454514 8.16071022 9.47304464 1 55 O_lyp
4.19220435 8.48828060 9.54218871 2 56 H_lyp
3.11917357 7.14982012 10.02155756 2 57 H_lyp
3.27837713 5.17587430 0.15154685 1 58 O_lyp
2.81682827 4.20403161 0.02882972 2 59 H_lyp
4.24058594 5.14224130 -0.49277945 2 60 H_lyp
8.21053817 5.75643383 3.34281193 1 61 O_lyp
8.09861953 4.83222352 2.70336111 2 62 H_lyp
7.11376447 6.14079447 3.15474274 2 63 H_lyp
4.81005667 4.90887211 1.98779332 1 64 O_lyp
5.38571894 5.83968403 1.96180107 2 65 H_lyp
3.73095150 5.30830825 1.98576862 2 66 H_lyp
3.19516077 8.62965429 3.08623709 1 67 O_lyp
2.25603450 8.21177853 3.54226255 2 68 H_lyp
3.11707799 8.40061493 2.01281054 2 69 H_lyp
0.89261833 2.77878463 0.25046625 1 70 O_lyp
0.82230580 2.70224904 1.39094458 2 71 H_lyp
-0.05955591 2.27514526 -0.05008367 2 72 H_lyp
8.90200244 0.96315762 1.22273121 1 73 O_lyp
9.59500964 0.84442687 0.38714350 2 74 H_lyp
9.60034635 0.64801784 2.09476748 2 75 H_lyp
2.71341855 3.21593357 7.16071466 1 76 O_lyp
1.74419305 3.79903893 6.84975594 2 77 H_lyp
2.55122105 3.10370945 8.25155167 2 78 H_lyp
9.09209790 9.04254472 2.95028632 1 79 O_lyp
9.88440726 9.31038336 2.23200849 2 80 H_lyp
9.60792321 8.16452432 3.39216753 2 81 H_lyp
0.67931606 1.55138245 3.20763974 1 82 O_lyp
0.54126373 2.57703888 2.70554284 2 83 H_lyp
1.70478243 1.26126696 2.97327275 2 84 H_lyp
2.27840870 3.22211137 4.42182325 1 85 O_lyp
3.05829582 2.44215844 4.37537502 2 86 H_lyp
2.57981159 3.78375565 5.34060522 2 87 H_lyp
5.96550697 7.37169765 6.58970508 1 88 O_lyp
6.47194401 8.37650444 6.33212812 2 89 H_lyp
4.99901186 7.46532598 5.99212126 2 90 H_lyp
8.58765836 9.59508488 8.55492543 1 91 O_lyp
9.18057929 8.79519603 9.10809537 2 92 H_lyp
8.22128882 10.28479272 9.32146107 2 93 H_lyp
4.35504264 4.33992458 5.20721770 1 94 O_lyp
4.62550610 3.50622599 4.52794968 2 95 H_lyp
3.90694606 3.82733038 6.14354882 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 6
<sparsity:sparsity for geom step 6
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 7>
<dData1D:(new from dSpData1D) n=125, refcount: 1>
refcount: 1>
new_DM -- step: 7
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 6
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 9>
<dData2D:(temp array for extrapolation) n=125 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 1: 10 30: 34 5: 9
3 1: 8 1: 7 5: 9
4 1: 10 1: 12 10: 12
5 11: 20 1: 7 13: 17
6 1: 10 1: 6 13: 17
7 26: 40 1: 9 18: 21
8 11: 20 13: 17 13: 17
9 11: 17 1: 7 21: 27
10 32: 40 1: 10 1: 3
11 11: 17 8: 12 21: 27
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 22: 30 22: 26 12: 17
16 22: 30 32: 40 9: 11
17 1: 10 1: 7 21: 27
18 32: 40 32: 40 1: 3
19 21: 30 1: 9 9: 11
20 11: 20 1: 12 10: 12
21 31: 40 6: 9 12: 17
22 18: 25 1: 9 18: 21
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 21: 31 1: 10 1: 3
26 31: 40 1: 9 9: 11
27 1: 9 1: 13 28: 32
28 21: 30 1: 4 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 12: 21 22: 29 1: 3
33 9: 20 1: 8 5: 9
34 21: 31 5: 10 4: 8
35 9: 20 9: 13 5: 9
36 12: 19 30: 34 22: 27
37 32: 40 10: 14 12: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 26: 40 1: 4 22: 29
42 1: 10 8: 12 21: 27
43 22: 31 32: 40 1: 3
44 32: 40 1: 5 4: 8
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 1: 11 22: 25 4: 9
48 22: 30 27: 31 4: 8
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 1: 8 8: 13 5: 9
52 11: 20 13: 21 10: 12
53 31: 40 11: 21 1: 3
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 1: 11 22: 29 1: 3
58 32: 40 6: 10 4: 8
59 1: 9 14: 21 28: 32
60 28: 40 11: 21 30: 34
61 18: 27 11: 21 30: 33
62 21: 30 11: 21 1: 3
63 1: 9 14: 17 33: 40
64 11: 21 30: 33 5: 9
65 1: 9 8: 13 33: 40
66 1: 9 14: 21 1: 4
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 1: 11 26: 29 4: 9
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 18: 25 1: 5 22: 29
75 21: 31 1: 4 4: 8
76 10: 17 14: 17 32: 40
77 1: 9 18: 21 33: 40
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 22: 30 32: 35 12: 17
81 18: 27 11: 16 34: 40
82 1: 9 13: 17 21: 27
83 31: 40 22: 26 4: 8
84 1: 10 13: 21 10: 12
85 10: 17 1: 13 28: 31
86 28: 40 33: 40 18: 20
87 10: 20 18: 21 4: 9
88 10: 17 18: 21 21: 27
89 1: 8 1: 13 1: 4
90 18: 28 1: 4 34: 40
91 10: 20 14: 21 1: 3
92 10: 17 13: 21 18: 20
93 1: 10 22: 29 28: 32
94 31: 40 11: 16 4: 8
95 10: 17 18: 21 32: 40
96 11: 19 22: 29 18: 20
97 21: 31 10: 15 12: 17
98 31: 40 32: 36 12: 17
99 12: 21 22: 26 4: 9
100 13: 21 22: 29 10: 12
101 31: 40 22: 31 1: 3
102 1: 12 22: 25 13: 17
103 20: 28 22: 32 18: 20
104 29: 40 22: 27 21: 29
105 21: 30 5: 9 12: 17
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 10: 20 14: 17 4: 9
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 12: 21 35: 40 13: 17
115 22: 30 22: 26 4: 8
116 1: 12 22: 29 10: 12
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 10: 17 14: 21 28: 31
123 11: 20 18: 21 13: 17
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 29: 40 22: 32 18: 20
130 1: 10 7: 12 13: 17
131 31: 40 27: 31 4: 8
132 22: 30 22: 31 9: 11
133 31: 40 1: 5 12: 17
134 22: 30 27: 31 12: 17
135 1: 10 22: 29 18: 20
136 29: 40 28: 32 21: 29
137 20: 28 28: 32 21: 29
138 31: 40 22: 26 12: 17
139 18: 25 6: 9 22: 29
140 1: 10 18: 21 13: 17
141 20: 30 22: 27 35: 40
142 31: 40 22: 31 9: 11
143 31: 40 28: 31 34: 40
144 11: 19 22: 24 21: 27
145 11: 21 30: 40 1: 4
146 18: 25 10: 13 22: 29
147 22: 31 32: 36 4: 8
148 1: 11 30: 40 10: 12
149 1: 11 30: 34 13: 17
150 12: 21 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 12: 21 27: 29 4: 9
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 32: 40 37: 40 4: 8
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 36: 40 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 1: 9 14: 17 5: 9
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 13: 21 22: 25 13: 17
177 21: 31 10: 21 9: 11
178 22: 31 37: 40 4: 8
179 1: 10 35: 40 5: 9
180 12: 21 30: 40 10: 12
181 1: 11 35: 40 13: 17
182 11: 17 1: 12 18: 20
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 13: 21 26: 29 13: 17
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 11: 15 35: 40
190 20: 29 36: 40 34: 40
191 1: 9 18: 21 21: 27
192 1: 9 18: 21 5: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10621
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14950.620810 -14949.510934 -14949.510934 0.074741 -3.417031 0.627991
scf: 2 -14949.295421 -14949.487819 -14949.487819 0.041358 -3.375313 0.830963
scf: 3 -14949.623819 -14949.579714 -14949.579714 0.021780 -3.402070 0.117246
scf: 4 -14949.583436 -14949.582129 -14949.582129 0.004813 -3.416671 0.029768
scf: 5 -14949.582287 -14949.582211 -14949.582211 0.000290 -3.417863 0.023449
scf: 6 -14949.582442 -14949.582354 -14949.582354 0.000955 -3.423739 0.007575
scf: 7 -14949.582369 -14949.582362 -14949.582362 0.000116 -3.424564 0.006366
scf: 8 -14949.582373 -14949.582369 -14949.582369 0.000208 -3.425511 0.005068
scf: 9 -14949.582374 -14949.582371 -14949.582371 0.000147 -3.425306 0.002909
scf: 10 -14949.582373 -14949.582372 -14949.582372 0.000030 -3.425298 0.002231
scf: 11 -14949.582373 -14949.582373 -14949.582373 0.000085 -3.425434 0.000627
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000854597
max |H_out - H_in| (eV) : 0.0006270376
SCF cycle converged after 11 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14949.5824
siesta: Atomic forces (eV/Ang):
1 -0.419858 -0.208436 -0.190339
2 -0.073600 -0.163102 -0.611692
3 0.487094 -0.087536 -0.211064
4 -0.789580 0.688591 -0.583447
5 0.169629 -0.361365 0.412612
6 0.897650 -0.157453 -0.369642
7 0.086985 0.166727 0.127801
8 0.759854 -0.476645 0.551772
9 0.749355 -0.492303 0.089786
10 0.724643 -0.275295 0.430944
11 0.189626 -1.361645 -0.357049
12 -0.328174 0.033707 0.085520
13 -0.242641 0.509292 0.375558
14 -0.224275 -0.049768 0.445678
15 -0.119551 -0.106745 0.351805
16 -0.515939 -0.927584 -0.222779
17 1.402162 -0.294855 0.683190
18 -1.188940 0.815374 -0.450980
19 -0.431084 -0.472741 0.651942
20 -0.303764 0.377108 -0.017683
21 0.405356 0.064393 -0.529686
22 -0.156246 0.416066 0.189189
23 -0.093461 0.576485 -0.866712
24 0.138634 -0.111244 0.050280
25 0.417559 -0.721835 0.885241
26 -0.168969 -0.302178 0.157869
27 0.360731 -0.039199 -0.027235
28 0.372908 -0.231317 0.191726
29 -0.173754 0.635006 0.469688
30 0.351092 0.657940 0.286117
31 -0.877937 0.224005 -0.333739
32 -0.780703 -0.305058 -0.250865
33 -0.457812 0.865484 -0.789460
34 -0.161223 -0.618948 0.310753
35 0.148791 0.907377 0.886545
36 0.194020 0.867745 -0.270187
37 0.569693 0.453551 -0.002385
38 -0.523630 -0.815948 -1.105156
39 0.847288 -0.099411 -0.324591
40 0.342938 0.555805 -0.119268
41 -0.219958 -0.032000 -0.094486
42 -0.259666 -0.597702 -0.185783
43 0.598398 0.100193 0.454231
44 -0.329484 0.633882 -0.584070
45 -0.469591 0.077933 -0.146360
46 -0.396598 0.412322 -0.764639
47 0.456726 -0.319593 -0.015712
48 0.349064 -0.062547 -0.083070
49 -0.555355 0.615684 0.842856
50 -0.505694 -0.143867 0.298928
51 -0.092641 -0.088520 0.244081
52 -0.966869 -0.847379 0.150641
53 0.389430 -0.180667 -0.224721
54 0.085001 0.084823 -0.053510
55 0.220589 -0.180258 0.906933
56 -0.091521 -0.054476 0.032025
57 -0.054166 -0.097852 -1.028020
58 -0.607675 0.787180 -1.882941
59 -0.264065 0.078729 0.308829
60 -0.135804 0.029635 0.112661
61 -0.914878 -0.898149 0.310855
62 -1.224162 1.364866 -0.457012
63 0.147804 1.320726 0.178543
64 -0.026325 -0.127020 1.144379
65 0.014752 -0.432872 0.151282
66 0.924221 -0.722116 0.040534
67 -0.864833 0.789695 -0.556088
68 0.699868 0.041374 -0.216459
69 -0.053183 -0.018827 -0.411506
70 -0.377334 0.549208 -0.569212
71 0.966351 -0.028447 -1.531086
72 0.164268 -0.167269 0.091318
73 0.291741 0.501744 -0.715004
74 0.344762 -0.665249 -0.508604
75 -0.971706 2.530922 0.185591
76 -0.530989 0.140719 -0.044897
77 0.045261 -0.742210 0.486425
78 0.459364 0.085031 -0.064535
79 0.723764 -1.327182 -0.516766
80 -0.065098 -1.040362 0.304547
81 0.203461 -0.639324 1.441033
82 -0.247357 -0.848843 -1.240238
83 0.164212 0.135847 2.342205
84 0.620729 -0.218985 0.566554
85 -0.426025 -0.495003 0.142551
86 -0.538612 -0.296266 0.057370
87 -0.266608 -0.067279 -1.179623
88 -0.190096 0.430326 -0.054461
89 -0.350852 -0.332676 0.701091
90 0.511254 -0.297306 0.103553
91 0.603617 0.279635 0.608223
92 -0.152741 0.014128 -0.512594
93 -0.497440 -0.332006 0.311343
94 0.418157 -0.382694 0.859992
95 0.437982 0.858075 -0.051959
96 1.077120 0.662988 0.383701
----------------------------------------
Tot -0.144567 -0.025235 0.068973
----------------------------------------
Max 2.530922
Res 0.578882 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 2.530922 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -35.18 -11.01 -21.07 -2.41 -5.01 4.50
(Free)E + p*V (eV/cell) -14936.1490
Target enthalpy (eV/cell) -14949.5824
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.870 1.880 1.685 1.760 1.545
4 6.884 1.912 1.637 1.664 1.671
7 6.887 1.890 1.790 1.674 1.533
10 6.885 1.900 1.567 1.514 1.902
13 6.872 1.873 1.659 1.652 1.688
16 6.759 1.916 1.754 1.485 1.604
19 6.910 1.893 1.817 1.541 1.659
22 6.926 1.911 1.495 1.529 1.991
25 6.847 1.903 1.608 1.910 1.426
28 6.856 1.888 1.662 1.462 1.844
31 6.842 1.874 1.584 1.680 1.703
34 6.831 1.900 1.676 1.692 1.563
37 6.908 1.879 1.845 1.550 1.633
40 6.909 1.895 1.732 1.472 1.810
43 6.851 1.892 1.435 1.641 1.884
46 6.844 1.910 1.482 1.710 1.742
49 6.864 1.903 1.449 1.614 1.898
52 6.873 1.886 1.566 1.521 1.900
55 6.901 1.918 1.589 1.876 1.518
58 6.872 1.893 1.525 1.850 1.603
61 6.857 1.897 1.506 1.805 1.649
64 6.913 1.901 1.583 1.985 1.444
67 6.843 1.920 1.898 1.401 1.624
70 6.818 1.918 1.841 1.447 1.611
73 6.813 1.924 1.925 1.363 1.601
76 6.890 1.884 1.822 1.493 1.690
79 6.812 1.896 1.659 1.652 1.605
82 6.805 1.913 1.569 1.828 1.496
85 6.798 1.905 1.569 1.620 1.704
88 6.934 1.892 1.650 1.828 1.564
91 6.894 1.879 1.584 1.621 1.810
94 6.839 1.902 1.584 1.488 1.865
Species: H_lyp
Atom Qatom Qorb
1s
2 0.580 0.580
3 0.477 0.477
5 0.567 0.567
6 0.530 0.530
8 0.558 0.558
9 0.569 0.569
11 0.590 0.590
12 0.586 0.586
14 0.568 0.568
15 0.491 0.491
17 0.569 0.569
18 0.616 0.616
20 0.558 0.558
21 0.531 0.531
23 0.588 0.588
24 0.577 0.577
26 0.522 0.522
27 0.601 0.601
29 0.583 0.583
30 0.522 0.522
32 0.560 0.560
33 0.632 0.632
35 0.568 0.568
36 0.553 0.553
38 0.516 0.516
39 0.550 0.550
41 0.541 0.541
42 0.576 0.576
44 0.573 0.573
45 0.600 0.600
47 0.559 0.559
48 0.572 0.572
50 0.550 0.550
51 0.555 0.555
53 0.542 0.542
54 0.518 0.518
56 0.575 0.575
57 0.546 0.546
59 0.624 0.624
60 0.561 0.561
62 0.613 0.613
63 0.479 0.479
65 0.616 0.616
66 0.572 0.572
68 0.578 0.578
69 0.591 0.591
71 0.607 0.607
72 0.598 0.598
74 0.660 0.660
75 0.593 0.593
77 0.521 0.521
78 0.523 0.523
80 0.660 0.660
81 0.534 0.534
83 0.621 0.621
84 0.580 0.580
86 0.594 0.594
87 0.589 0.589
89 0.551 0.551
90 0.571 0.571
92 0.545 0.545
93 0.585 0.585
95 0.591 0.591
96 0.570 0.570
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 7
====================================
outcoor: Atomic coordinates (Ang):
0.22629482 3.67923827 6.47557039 1 1 O_lyp
-0.69079163 4.12903982 6.83828950 2 2 H_lyp
-0.06974849 2.89745356 5.77628733 2 3 H_lyp
1.45012971 6.97962391 7.04098900 1 4 O_lyp
2.11310104 7.84608293 6.94022861 2 5 H_lyp
0.89948123 7.31568009 7.99195701 2 6 H_lyp
6.92806332 0.22805463 6.64171908 1 7 O_lyp
7.63570096 0.05354184 7.43181096 2 8 H_lyp
6.10370987 0.84500569 7.06916909 2 9 H_lyp
6.04068550 9.50457215 1.16795402 1 10 O_lyp
6.15272778 10.45834515 0.59778370 2 11 H_lyp
6.56966351 9.78701073 2.25673355 2 12 H_lyp
5.99744618 7.24617041 2.74706229 1 13 O_lyp
6.22612401 8.03509418 1.99275462 2 14 H_lyp
5.12448278 7.64219501 3.31174461 2 15 H_lyp
0.17207936 4.02750055 2.51324463 1 16 O_lyp
-0.64451575 4.41655749 3.25753300 2 17 H_lyp
-0.41293017 3.62283557 1.67838345 2 18 H_lyp
0.59816806 7.06360120 4.24150338 1 19 O_lyp
0.82183420 6.98919569 5.36326584 2 20 H_lyp
-0.38726462 6.43244324 4.08763112 2 21 H_lyp
5.49890204 1.89963592 8.73331770 1 22 O_lyp
5.42887752 1.97340603 9.91492013 2 23 H_lyp
5.52905376 2.98917274 8.55576512 2 24 H_lyp
3.87789120 7.03386834 4.86279265 1 25 O_lyp
4.29938327 5.98588300 4.77501248 2 26 H_lyp
2.84161953 6.87699388 5.15007924 2 27 H_lyp
9.20380980 5.11100523 9.03417998 1 28 O_lyp
8.93678615 4.98519834 7.99484803 2 29 H_lyp
9.77734508 4.17032814 9.35814743 2 30 H_lyp
5.30255998 0.67461987 5.04556193 1 31 O_lyp
4.45220514 0.61084156 5.74357146 2 32 H_lyp
5.39055859 1.53627399 4.49336342 2 33 H_lyp
5.61545805 2.26207307 1.56030944 1 34 O_lyp
6.03649841 1.36472106 2.11279788 2 35 H_lyp
4.68017337 2.49025774 2.06248949 2 36 H_lyp
7.09700693 0.70286057 3.52250507 1 37 O_lyp
6.88025775 0.64742739 4.72100246 2 38 H_lyp
7.98764796 0.10217347 3.47565766 2 39 H_lyp
5.62539050 5.29036247 8.62800727 1 40 O_lyp
5.77691708 6.10937068 7.79975760 2 41 H_lyp
6.15054817 5.70039217 9.57621150 2 42 H_lyp
2.29074174 5.31353139 2.68164564 1 43 O_lyp
2.34176268 4.36711587 3.31164392 2 44 H_lyp
1.88933354 6.03059170 3.37169128 2 45 H_lyp
7.29072343 6.30471096 0.75356235 1 46 O_lyp
7.98002039 6.03197766 -0.02118923 2 47 H_lyp
7.03515593 7.38186024 0.66152277 2 48 H_lyp
3.04888799 0.60307109 6.15879664 1 49 O_lyp
2.90507506 1.67807873 6.56767653 2 50 H_lyp
3.01324907 -0.05040639 7.00646658 2 51 H_lyp
0.31177878 7.71745583 9.63037093 1 52 O_lyp
0.55959094 7.86783382 10.66429102 2 53 H_lyp
0.04514873 6.59369695 9.55966542 2 54 H_lyp
3.14408487 8.16904925 9.49344687 1 55 O_lyp
4.19016556 8.48861681 9.54135475 2 56 H_lyp
3.11555049 7.13359054 9.99972229 2 57 H_lyp
3.22674834 5.19728329 0.08904148 1 58 O_lyp
2.80577397 4.20502687 0.03560307 2 59 H_lyp
4.25593845 5.14296671 -0.49737221 2 60 H_lyp
8.20368776 5.75246633 3.37293058 1 61 O_lyp
8.03516319 4.86462412 2.67224547 2 62 H_lyp
7.09771927 6.18012944 3.15162143 2 63 H_lyp
4.82867568 4.89434753 2.03446215 1 64 O_lyp
5.39223842 5.83512542 1.96660240 2 65 H_lyp
3.74844272 5.28988026 1.98819601 2 66 H_lyp
3.17588319 8.65833824 3.05641171 1 67 O_lyp
2.26776154 8.20873410 3.54271246 2 68 H_lyp
3.11716384 8.40182491 2.00368531 2 69 H_lyp
0.89065319 2.79605438 0.21042095 1 70 O_lyp
0.85072195 2.69844446 1.36440812 2 71 H_lyp
-0.05928917 2.27053756 -0.05114147 2 72 H_lyp
8.86588502 1.00640877 1.15600731 1 73 O_lyp
9.60934348 0.82850082 0.36578824 2 74 H_lyp
9.59329700 0.75385324 2.11892961 2 75 H_lyp
2.71672842 3.20695487 7.17192607 1 76 O_lyp
1.72725124 3.79053969 6.85843842 2 77 H_lyp
2.56513353 3.10663250 8.24750615 2 78 H_lyp
9.10038169 8.99394803 2.95101148 1 79 O_lyp
9.90408592 9.23116067 2.24864036 2 80 H_lyp
9.62086913 8.13006862 3.43822722 2 81 H_lyp
0.69135837 1.49767557 3.19323185 1 82 O_lyp
0.54150522 2.60006252 2.76663621 2 83 H_lyp
1.71305396 1.25975607 2.99176224 2 84 H_lyp
2.26192908 3.18871705 4.41771876 1 85 O_lyp
3.03544236 2.44032348 4.37664466 2 86 H_lyp
2.56840216 3.78566541 5.30964333 2 87 H_lyp
5.96200529 7.36584792 6.59880288 1 88 O_lyp
6.46880035 8.38316153 6.34612027 2 89 H_lyp
5.00369128 7.45908814 5.98756550 2 90 H_lyp
8.60531206 9.60638683 8.57496385 1 91 O_lyp
9.18265031 8.78574059 9.09311345 2 92 H_lyp
8.20337873 10.28046025 9.32862455 2 93 H_lyp
4.38819892 4.33768421 5.21890428 1 94 O_lyp
4.63832715 3.53407844 4.52572205 2 95 H_lyp
3.93467883 3.84108845 6.17300901 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 7
<sparsity:sparsity for geom step 7
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 7>
<dData1D:(new from dSpData1D) n=125, refcount: 1>
refcount: 1>
new_DM -- step: 8
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 7
nrows_g=192 nrows=1 sparsity=.0034 nnzs=125, refcount: 9>
<dData2D:(temp array for extrapolation) n=125 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 11: 20 13: 17 13: 17
4 1: 10 1: 12 10: 12
5 11: 20 1: 7 13: 17
6 18: 25 1: 9 18: 21
7 26: 40 1: 9 18: 21
8 11: 17 8: 12 21: 27
9 11: 17 1: 7 21: 27
10 11: 21 30: 34 13: 17
11 32: 40 32: 40 1: 3
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 32: 40 1: 10 1: 3
16 22: 30 32: 40 9: 11
17 1: 10 1: 7 21: 27
18 11: 20 14: 21 1: 3
19 1: 8 1: 7 5: 9
20 11: 20 1: 12 10: 12
21 21: 30 5: 9 12: 17
22 1: 12 22: 25 13: 17
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 21: 31 5: 10 4: 8
26 11: 20 13: 21 10: 12
27 1: 9 1: 13 28: 32
28 31: 40 6: 9 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 21: 30 1: 4 12: 17
33 26: 40 1: 4 22: 29
34 1: 8 8: 13 5: 9
35 9: 20 8: 13 5: 9
36 21: 30 1: 9 9: 11
37 32: 40 10: 14 12: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 1: 10 8: 12 21: 27
42 31: 40 1: 9 9: 11
43 12: 21 22: 29 1: 3
44 18: 28 1: 10 30: 33
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 22: 31 9: 11
48 12: 19 30: 34 22: 27
49 1: 9 8: 13 33: 40
50 21: 30 11: 17 4: 8
51 11: 20 14: 17 4: 9
52 1: 10 13: 21 10: 12
53 21: 31 1: 10 1: 3
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 31: 40 11: 21 1: 3
58 32: 40 1: 5 4: 8
59 9: 17 14: 21 28: 31
60 28: 40 11: 21 30: 34
61 18: 27 11: 21 30: 33
62 21: 30 11: 21 1: 3
63 22: 30 22: 26 12: 17
64 22: 30 27: 31 4: 8
65 9: 20 1: 7 5: 9
66 22: 31 32: 40 1: 3
67 11: 20 18: 21 4: 9
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 1: 11 26: 29 4: 9
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 14: 21 22: 29
74 1: 11 22: 25 4: 9
75 32: 40 6: 10 4: 8
76 9: 17 14: 17 32: 40
77 1: 11 22: 29 1: 3
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 11: 21 30: 33 5: 9
81 18: 27 11: 16 34: 40
82 1: 10 14: 21 1: 4
83 12: 21 22: 26 4: 9
84 21: 31 1: 4 4: 8
85 10: 17 1: 13 28: 31
86 18: 25 1: 5 22: 29
87 1: 8 14: 17 33: 40
88 10: 17 18: 21 21: 27
89 1: 8 1: 13 1: 4
90 18: 25 6: 9 22: 29
91 1: 8 14: 21 28: 32
92 10: 17 13: 21 18: 20
93 1: 10 22: 29 28: 32
94 9: 17 18: 21 32: 40
95 1: 8 18: 21 33: 40
96 13: 21 22: 29 10: 12
97 21: 31 10: 15 12: 17
98 1: 9 13: 17 21: 27
99 31: 40 22: 26 4: 8
100 31: 40 22: 31 9: 11
101 28: 40 33: 40 18: 20
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 27 21: 29
105 18: 28 1: 4 34: 40
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 18: 25 10: 13 22: 29
112 1: 10 22: 24 33: 40
113 21: 31 16: 21 12: 17
114 31: 40 11: 16 4: 8
115 22: 30 22: 26 4: 8
116 1: 12 22: 29 10: 12
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 11: 17 1: 12 18: 20
123 1: 10 18: 21 5: 9
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 29: 40 22: 32 18: 20
130 1: 10 1: 6 13: 17
131 31: 40 27: 31 4: 8
132 22: 30 27: 31 12: 17
133 1: 10 7: 12 13: 17
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 28: 32 21: 29
137 20: 28 28: 32 21: 29
138 31: 40 1: 5 12: 17
139 1: 9 18: 21 21: 27
140 1: 10 14: 17 5: 9
141 20: 30 22: 27 35: 40
142 1: 10 35: 40 13: 17
143 31: 40 28: 31 34: 40
144 1: 10 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 1: 10 30: 34 13: 17
147 1: 10 30: 34 5: 9
148 11: 21 30: 40 10: 12
149 31: 40 32: 36 12: 17
150 22: 30 32: 35 12: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 11: 20 18: 21 13: 17
156 10: 19 30: 34 31: 40
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 11: 19 22: 24 21: 27
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 22: 30 36: 40 12: 17
166 31: 40 37: 40 12: 17
167 12: 19 30: 40 18: 21
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 22: 27
170 32: 40 37: 40 4: 8
171 10: 19 30: 40 28: 30
172 10: 19 35: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 13: 21 26: 29 13: 17
177 21: 31 10: 21 9: 11
178 22: 31 37: 40 4: 8
179 1: 10 35: 40 5: 9
180 1: 10 30: 40 10: 12
181 11: 21 35: 40 13: 17
182 22: 31 32: 36 4: 8
183 20: 27 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 13: 21 22: 25 13: 17
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 11: 15 35: 40
190 20: 29 36: 40 34: 40
191 31: 40 17: 21 4: 8
192 12: 21 27: 29 4: 9
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10594
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14952.301221 -14951.578822 -14951.578822 0.070771 -2.716936 0.551982
scf: 2 -14951.395177 -14951.558195 -14951.558195 0.039965 -2.678643 0.903187
scf: 3 -14951.674071 -14951.635994 -14951.635994 0.021889 -2.702971 0.140198
scf: 4 -14951.639770 -14951.638525 -14951.638525 0.005852 -2.719295 0.032797
scf: 5 -14951.638683 -14951.638610 -14951.638610 0.000573 -2.720012 0.024743
scf: 6 -14951.638792 -14951.638719 -14951.638719 0.000819 -2.724703 0.012882
scf: 7 -14951.638754 -14951.638737 -14951.638737 0.000161 -2.726011 0.010103
scf: 8 -14951.638767 -14951.638756 -14951.638756 0.000283 -2.727786 0.006080
scf: 9 -14951.638761 -14951.638759 -14951.638759 0.000113 -2.727742 0.005575
scf: 10 -14951.638763 -14951.638761 -14951.638761 0.000105 -2.727515 0.004310
scf: 11 -14951.638763 -14951.638762 -14951.638762 0.000108 -2.727401 0.001954
scf: 12 -14951.638763 -14951.638762 -14951.638762 0.000030 -2.727493 0.001620
scf: 13 -14951.638763 -14951.638763 -14951.638763 0.000061 -2.727895 0.000994
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000610855
max |H_out - H_in| (eV) : 0.0009944420
SCF cycle converged after 13 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
siesta: E_KS(eV) = -14951.6388
siesta: Atomic forces (eV/Ang):
1 0.268163 0.298657 0.210904
2 -0.350814 -0.076061 -0.480893
3 0.186778 -0.650877 -0.619375
4 -1.048006 0.388259 -0.215712
5 0.529748 0.042368 0.234077
6 0.742983 -0.251907 -0.409158
7 -0.626067 0.143161 -0.931587
8 1.172328 -0.511694 1.018752
9 0.632337 -0.333769 0.186754
10 0.850614 -0.186883 0.881220
11 0.178170 -1.284610 -0.206337
12 -0.471665 0.002498 -0.404272
13 0.156344 0.003111 0.199277
14 -0.221286 0.188958 0.291426
15 -0.370242 0.045809 0.514749
16 -1.177825 -0.720474 0.597113
17 1.373789 -0.165930 -0.107170
18 -1.065136 0.644984 -0.470023
19 -0.526833 -0.781316 0.527527
20 -0.368619 0.367014 -0.020230
21 0.610262 0.213622 -0.365261
22 -0.219183 0.164187 0.783590
23 0.016045 0.285461 -1.032031
24 0.171917 0.307850 -0.206052
25 0.747271 -0.546002 0.447504
26 -0.148816 -0.280804 0.209843
27 -0.068733 -0.076288 0.094989
28 0.512384 -0.049365 0.838601
29 -0.274808 0.458347 -0.094485
30 0.382351 0.534713 0.185558
31 -0.194301 -1.123259 0.539582
32 -0.714258 -0.090498 -0.481626
33 -0.343423 1.925717 -1.313620
34 0.171264 -0.742538 0.020303
35 0.165048 0.840700 0.652426
36 -0.106802 0.904596 -0.063537
37 -0.303742 0.551452 0.766356
38 -0.641594 -0.642693 -1.415234
39 1.393400 -0.486936 -0.459207
40 0.284007 0.616075 0.180956
41 -0.177158 -0.090858 0.109577
42 -0.292762 -0.562751 -0.581834
43 0.772091 -0.705849 0.124217
44 -0.298190 0.721646 -0.670037
45 -0.766570 0.683231 0.365698
46 -1.122644 0.545883 0.225338
47 1.045133 -0.429450 -0.720969
48 0.421039 -0.042914 -0.167721
49 -0.379269 1.310025 0.087067
50 -0.450243 -0.364191 0.315588
51 -0.187814 -0.604063 1.050359
52 -0.962289 -1.250053 -0.892512
53 0.557565 -0.031468 0.608042
54 0.085950 0.276826 -0.021863
55 -0.335391 -0.442218 0.862432
56 0.354485 0.046038 0.096156
57 -0.009544 0.008531 -1.016043
58 0.334876 0.869097 -1.610570
59 -0.287289 -0.045676 0.335764
60 -0.552490 0.085042 0.097014
61 -1.163410 -1.377971 -0.300232
62 -0.536556 1.424974 0.018955
63 0.385204 1.310981 0.426636
64 -0.295434 -0.025138 0.619418
65 -0.013848 -0.479526 0.177478
66 0.821970 -0.634145 0.068041
67 -0.734438 0.788552 0.201782
68 0.673077 0.091439 -0.291738
69 -0.108208 -0.165426 -0.925147
70 -0.264701 0.631432 -0.009582
71 0.883670 0.096973 -1.763453
72 -0.050680 -0.343443 0.081902
73 1.204818 0.346022 0.316801
74 0.179238 -0.707064 -0.319006
75 -1.264075 1.781348 -0.374286
76 -0.707698 0.392880 -0.874678
77 0.279671 -0.910225 0.522586
78 0.350387 0.014362 0.536610
79 0.572965 -1.091612 -0.549183
80 -0.158912 -0.200107 0.026850
81 0.066754 -0.283562 1.278358
82 -1.377416 0.241164 -1.529522
83 0.233945 -0.365854 2.167424
84 1.383266 -0.541106 0.373598
85 -0.876481 0.427986 0.115912
86 0.180604 -0.984969 0.028799
87 -0.129084 -0.053733 -0.954538
88 -0.088509 0.668407 -0.125023
89 -0.367387 -0.526892 0.781422
90 0.469251 -0.341454 0.147306
91 0.424251 0.235290 -0.002793
92 -0.124286 0.031190 -0.258720
93 -0.452443 -0.271298 0.578192
94 -0.222781 -0.022266 1.294988
95 0.558392 0.349746 -0.349524
96 1.025011 0.622916 0.084964
----------------------------------------
Tot -0.191337 0.032331 -0.098010
----------------------------------------
Max 2.167424
Res 0.634459 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 2.167424 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -28.80 -8.42 -14.96 -5.51 -0.94 3.47
(Free)E + p*V (eV/cell) -14941.2166
Target enthalpy (eV/cell) -14951.6388
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.882 1.872 1.687 1.762 1.562
4 6.889 1.911 1.657 1.651 1.670
7 6.901 1.883 1.794 1.689 1.536
10 6.891 1.900 1.565 1.516 1.910
13 6.879 1.866 1.673 1.655 1.685
16 6.769 1.918 1.760 1.481 1.610
19 6.910 1.890 1.809 1.545 1.665
22 6.926 1.915 1.489 1.532 1.991
25 6.857 1.897 1.615 1.917 1.427
28 6.867 1.881 1.674 1.470 1.842
31 6.868 1.859 1.596 1.689 1.724
34 6.842 1.894 1.693 1.689 1.566
37 6.903 1.883 1.835 1.555 1.631
40 6.909 1.895 1.736 1.473 1.805
43 6.858 1.889 1.435 1.655 1.879
46 6.862 1.897 1.493 1.737 1.735
49 6.874 1.896 1.455 1.627 1.895
52 6.882 1.880 1.568 1.534 1.900
55 6.909 1.914 1.580 1.894 1.522
58 6.885 1.893 1.503 1.885 1.603
61 6.865 1.900 1.535 1.776 1.654
64 6.916 1.903 1.582 1.984 1.448
67 6.856 1.915 1.881 1.410 1.652
70 6.826 1.919 1.829 1.455 1.623
73 6.828 1.933 1.928 1.389 1.579
76 6.893 1.884 1.821 1.497 1.692
79 6.832 1.896 1.683 1.647 1.606
82 6.823 1.908 1.575 1.859 1.481
85 6.818 1.902 1.569 1.644 1.702
88 6.932 1.892 1.645 1.822 1.574
91 6.904 1.871 1.592 1.637 1.804
94 6.853 1.897 1.599 1.483 1.873
Species: H_lyp
Atom Qatom Qorb
1s
2 0.567 0.567
3 0.474 0.474
5 0.562 0.562
6 0.526 0.526
8 0.550 0.550
9 0.563 0.563
11 0.588 0.588
12 0.592 0.592
14 0.560 0.560
15 0.485 0.485
17 0.555 0.555
18 0.601 0.601
20 0.555 0.555
21 0.535 0.535
23 0.586 0.586
24 0.579 0.579
26 0.518 0.518
27 0.595 0.595
29 0.576 0.576
30 0.519 0.519
32 0.550 0.550
33 0.619 0.619
35 0.559 0.559
36 0.553 0.553
38 0.512 0.512
39 0.544 0.544
41 0.540 0.540
42 0.577 0.577
44 0.574 0.574
45 0.593 0.593
47 0.549 0.549
48 0.561 0.561
50 0.545 0.545
51 0.551 0.551
53 0.538 0.538
54 0.517 0.517
56 0.571 0.571
57 0.544 0.544
59 0.620 0.620
60 0.564 0.564
62 0.604 0.604
63 0.480 0.480
65 0.612 0.612
66 0.570 0.570
68 0.574 0.574
69 0.582 0.582
71 0.600 0.600
72 0.595 0.595
74 0.666 0.666
75 0.586 0.586
77 0.519 0.519
78 0.520 0.520
80 0.646 0.646
81 0.542 0.542
83 0.607 0.607
84 0.570 0.570
86 0.582 0.582
87 0.582 0.582
89 0.552 0.552
90 0.569 0.569
92 0.542 0.542
93 0.577 0.577
95 0.584 0.584
96 0.560 0.560
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 8
====================================
outcoor: Atomic coordinates (Ang):
0.20886095 3.66619256 6.46573413 1 1 O_lyp
-0.69396999 4.12649904 6.82138339 2 2 H_lyp
-0.05194832 2.89964814 5.77176544 2 3 H_lyp
1.43493675 6.99407564 7.00772668 1 4 O_lyp
2.11561326 7.83458663 6.95452550 2 5 H_lyp
0.92114086 7.31691714 7.99142299 2 6 H_lyp
6.95466650 0.22825925 6.66735515 1 7 O_lyp
7.65398224 0.03934460 7.44349529 2 8 H_lyp
6.11918592 0.83383633 7.07366896 2 9 H_lyp
6.04888131 9.48087406 1.15862655 1 10 O_lyp
6.15938007 10.42751942 0.57705203 2 11 H_lyp
6.57346536 9.79018755 2.28622160 2 12 H_lyp
5.98718182 7.26156541 2.76330083 1 13 O_lyp
6.22237880 8.03594017 2.00111703 2 14 H_lyp
5.11831224 7.63951261 3.32379159 2 15 H_lyp
0.19201581 3.99600634 2.48669642 1 16 O_lyp
-0.60669206 4.40394033 3.30526499 2 17 H_lyp
-0.45087933 3.64723185 1.66285613 2 18 H_lyp
0.59792110 7.06594995 4.25144365 1 19 O_lyp
0.81861438 6.99901846 5.37565556 2 20 H_lyp
-0.39386272 6.42289802 4.06688300 2 21 H_lyp
5.49691159 1.90557654 8.71105617 1 22 O_lyp
5.42235338 1.99745295 9.90887481 2 23 H_lyp
5.53227578 2.98693437 8.56155326 2 24 H_lyp
3.88654715 7.01857466 4.89515463 1 25 O_lyp
4.29906049 5.96701647 4.77793402 2 26 H_lyp
2.85250908 6.87574755 5.14906652 2 27 H_lyp
9.20704592 5.11198234 9.03143032 1 28 O_lyp
8.93109224 5.00641301 8.01012340 2 29 H_lyp
9.79241593 4.18085535 9.37219821 2 30 H_lyp
5.25316945 0.70685290 5.01385301 1 31 O_lyp
4.42202118 0.59638381 5.74743983 2 32 H_lyp
5.37781328 1.54247963 4.47774696 2 33 H_lyp
5.60659401 2.25658832 1.56725591 1 34 O_lyp
6.04382423 1.38325611 2.14973850 2 35 H_lyp
4.68436470 2.51588597 2.05452384 2 36 H_lyp
7.13065542 0.71677591 3.48736282 1 37 O_lyp
6.87011485 0.62225412 4.71226466 2 38 H_lyp
8.00442956 0.10447045 3.46955136 2 39 H_lyp
5.62882048 5.29041888 8.61745811 1 40 O_lyp
5.77146878 6.11913665 7.78103543 2 41 H_lyp
6.15004407 5.68729573 9.59139723 2 42 H_lyp
2.30681800 5.33761000 2.68866518 1 43 O_lyp
2.33287760 4.37343683 3.30397099 2 44 H_lyp
1.87883592 6.02543255 3.36180649 2 45 H_lyp
7.29183246 6.30783209 0.71566751 1 46 O_lyp
7.98729701 6.02136480 -0.01302490 2 47 H_lyp
7.04015682 7.38898962 0.66068009 2 48 H_lyp
3.03300788 0.60004087 6.18587271 1 49 O_lyp
2.88795671 1.69209352 6.57998973 2 50 H_lyp
3.01274449 -0.04967538 7.00367593 2 51 H_lyp
0.28596449 7.71468254 9.64938119 1 52 O_lyp
0.56990337 7.86146902 10.64986910 2 53 H_lyp
0.04388563 6.57870780 9.55684302 2 54 H_lyp
3.15362460 8.17738828 9.51384910 1 55 O_lyp
4.18812677 8.48895303 9.54052079 2 56 H_lyp
3.11192742 7.11736096 9.97788701 2 57 H_lyp
3.17511955 5.21869227 0.02653611 1 58 O_lyp
2.79471966 4.20602213 0.04237642 2 59 H_lyp
4.27129097 5.14369213 -0.50196496 2 60 H_lyp
8.19683734 5.74849882 3.40304923 1 61 O_lyp
7.97170686 4.89702473 2.64112984 2 62 H_lyp
7.08167406 6.21946441 3.14850013 2 63 H_lyp
4.84729468 4.87982296 2.08113097 1 64 O_lyp
5.39875791 5.83056682 1.97140373 2 65 H_lyp
3.76593393 5.27145226 1.99062340 2 66 H_lyp
3.15660561 8.68702218 3.02658633 1 67 O_lyp
2.27948859 8.20568967 3.54316237 2 68 H_lyp
3.11724970 8.40303489 1.99456008 2 69 H_lyp
0.88868805 2.81332413 0.17037565 1 70 O_lyp
0.87913811 2.69463988 1.33787165 2 71 H_lyp
-0.05902243 2.26592986 -0.05219927 2 72 H_lyp
8.82976761 1.04965992 1.08928341 1 73 O_lyp
9.62367732 0.81257477 0.34443298 2 74 H_lyp
9.58624765 0.85968864 2.14309173 2 75 H_lyp
2.72003828 3.19797618 7.18313748 1 76 O_lyp
1.71030943 3.78204044 6.86712089 2 77 H_lyp
2.57904602 3.10955556 8.24346062 2 78 H_lyp
9.10866548 8.94535133 2.95173663 1 79 O_lyp
9.92376459 9.15193798 2.26527222 2 80 H_lyp
9.63381504 8.09561292 3.48428691 2 81 H_lyp
0.70340067 1.44396869 3.17882396 1 82 O_lyp
0.54174670 2.62308616 2.82772958 2 83 H_lyp
1.72132550 1.25824519 3.01025173 2 84 H_lyp
2.24544946 3.15532272 4.41361427 1 85 O_lyp
3.01258890 2.43848852 4.37791429 2 86 H_lyp
2.55699273 3.78757517 5.27868143 2 87 H_lyp
5.95850360 7.35999820 6.60790068 1 88 O_lyp
6.46565669 8.38981862 6.36011241 2 89 H_lyp
5.00837069 7.45285029 5.98300973 2 90 H_lyp
8.62296577 9.61768878 8.59500226 1 91 O_lyp
9.18472132 8.77628516 9.07813153 2 92 H_lyp
8.18546863 10.27612778 9.33578802 2 93 H_lyp
4.42135520 4.33544383 5.23059085 1 94 O_lyp
4.65114819 3.56193090 4.52349442 2 95 H_lyp
3.96241160 3.85484652 6.20246920 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 8
<sparsity:sparsity for geom step 8
nrows_g=192 nrows=1 sparsity=.0035 nnzs=128, refcount: 7>
<dData1D:(new from dSpData1D) n=128, refcount: 1>
refcount: 1>
new_DM -- step: 9
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 8
nrows_g=192 nrows=1 sparsity=.0035 nnzs=128, refcount: 9>
<dData2D:(temp array for extrapolation) n=128 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 11: 20 13: 17 13: 17
4 11: 20 1: 12 10: 12
5 11: 20 1: 7 13: 17
6 1: 10 1: 6 13: 17
7 26: 40 1: 9 18: 21
8 11: 17 8: 12 21: 27
9 11: 17 1: 7 21: 27
10 11: 21 30: 34 13: 17
11 32: 40 32: 40 1: 3
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 32: 40 1: 10 1: 3
16 11: 20 14: 21 1: 3
17 1: 10 1: 7 21: 27
18 11: 20 13: 21 10: 12
19 12: 21 22: 29 1: 3
20 1: 10 1: 12 10: 12
21 21: 30 1: 4 12: 17
22 18: 25 1: 9 18: 21
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 31: 40 11: 21 1: 3
26 22: 30 22: 26 12: 17
27 1: 9 1: 13 28: 32
28 1: 12 22: 25 13: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 1: 8 1: 6 5: 9
33 26: 40 1: 4 22: 29
34 1: 8 7: 13 5: 9
35 9: 20 8: 13 5: 9
36 31: 40 6: 9 12: 17
37 1: 10 7: 12 13: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 1: 10 8: 12 21: 27
42 22: 31 32: 40 1: 3
43 32: 40 1: 5 4: 8
44 18: 27 11: 21 30: 33
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 27: 31 12: 17
48 32: 40 6: 10 4: 8
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 11: 20 14: 17 4: 9
52 1: 10 13: 21 10: 12
53 21: 31 5: 10 4: 8
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 21: 31 1: 10 1: 3
58 22: 30 27: 31 4: 8
59 9: 17 14: 21 28: 31
60 28: 40 11: 21 30: 34
61 1: 9 8: 13 33: 40
62 21: 30 11: 21 1: 3
63 31: 40 1: 9 9: 11
64 11: 21 30: 33 5: 9
65 18: 27 11: 16 34: 40
66 32: 40 10: 14 12: 17
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 21: 30 1: 9 9: 11
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 15: 21 22: 29
74 1: 11 22: 29 1: 3
75 21: 31 1: 4 4: 8
76 9: 17 14: 17 32: 40
77 1: 11 26: 29 4: 9
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 10: 17 13: 21 18: 20
81 9: 20 1: 7 5: 9
82 1: 10 14: 21 1: 4
83 11: 20 18: 21 4: 9
84 1: 12 22: 29 10: 12
85 10: 17 1: 13 28: 31
86 18: 25 10: 14 22: 29
87 12: 19 30: 40 18: 20
88 10: 17 18: 21 21: 27
89 1: 8 1: 13 1: 4
90 1: 11 22: 25 4: 9
91 1: 8 14: 21 28: 32
92 22: 30 37: 40 12: 17
93 1: 10 22: 29 28: 32
94 9: 17 18: 21 32: 40
95 18: 25 6: 9 22: 29
96 11: 20 18: 21 13: 17
97 21: 31 16: 21 12: 17
98 18: 25 1: 5 22: 29
99 12: 21 22: 26 4: 9
100 13: 21 22: 29 10: 12
101 1: 9 13: 17 21: 27
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 27 21: 29
105 18: 28 1: 4 34: 40
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 1: 8 14: 17 33: 40
112 1: 10 22: 24 33: 40
113 29: 40 22: 32 18: 20
114 31: 40 11: 16 4: 8
115 22: 30 22: 26 4: 8
116 31: 40 22: 31 9: 11
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 1: 8 18: 21 33: 40
123 21: 30 18: 21 4: 8
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 22: 31 37: 40 4: 8
129 21: 31 10: 21 9: 11
130 1: 10 35: 40 5: 9
131 1: 10 30: 34 5: 9
132 22: 30 22: 31 9: 11
133 31: 40 1: 5 12: 17
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 28: 32 21: 29
137 20: 28 28: 32 21: 29
138 12: 19 30: 34 21: 27
139 10: 19 30: 40 28: 30
140 1: 10 14: 17 5: 9
141 10: 19 30: 33 31: 40
142 21: 30 5: 9 12: 17
143 31: 40 28: 31 34: 40
144 1: 10 18: 21 5: 9
145 11: 21 30: 40 1: 4
146 1: 9 18: 21 21: 27
147 22: 31 32: 36 4: 8
148 11: 21 30: 40 10: 12
149 31: 40 32: 36 12: 17
150 1: 10 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 1: 10 18: 21 13: 17
156 30: 40 32: 40 30: 34
157 20: 30 22: 27 35: 40
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 11: 19 22: 24 21: 27
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 11: 21 35: 40 13: 17
166 22: 30 32: 36 12: 17
167 20: 27 33: 40 18: 20
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 21: 27
170 11: 17 1: 12 18: 20
171 13: 21 22: 25 13: 17
172 10: 19 34: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 12: 21 27: 29 4: 9
177 21: 31 10: 15 12: 17
178 31: 40 22: 26 4: 8
179 22: 30 32: 40 9: 11
180 1: 10 30: 40 10: 12
181 1: 10 35: 40 13: 17
182 31: 40 37: 40 12: 17
183 28: 40 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 32: 40 37: 40 4: 8
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 11: 15 35: 40
190 20: 29 36: 40 34: 40
191 31: 40 27: 31 4: 8
192 13: 21 26: 29 13: 17
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10604
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14952.742483 -14952.374875 -14952.374875 0.068132 -2.566297 0.572804
scf: 2 -14952.195491 -14952.351697 -14952.351697 0.044825 -2.544033 0.951911
scf: 3 -14952.461872 -14952.425717 -14952.425717 0.024670 -2.560223 0.150579
scf: 4 -14952.429850 -14952.428502 -14952.428502 0.006184 -2.577506 0.033045
scf: 5 -14952.428652 -14952.428583 -14952.428583 0.000602 -2.578243 0.026647
scf: 6 -14952.428749 -14952.428682 -14952.428682 0.000800 -2.582752 0.014193
scf: 7 -14952.428719 -14952.428702 -14952.428702 0.000177 -2.584183 0.011568
scf: 8 -14952.428731 -14952.428720 -14952.428720 0.000303 -2.585881 0.007418
scf: 9 -14952.428726 -14952.428723 -14952.428723 0.000121 -2.585848 0.005911
scf: 10 -14952.428728 -14952.428726 -14952.428726 0.000127 -2.585620 0.004727
scf: 11 -14952.428728 -14952.428727 -14952.428727 0.000120 -2.585512 0.002192
scf: 12 -14952.428728 -14952.428727 -14952.428727 0.000036 -2.585617 0.001932
scf: 13 -14952.428728 -14952.428728 -14952.428728 0.000063 -2.586041 0.001345
scf: 14 -14952.428728 -14952.428728 -14952.428728 0.000013 -2.586141 0.001200
scf: 15 -14952.428728 -14952.428728 -14952.428728 0.000033 -2.586257 0.000743
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000330022
max |H_out - H_in| (eV) : 0.0007433208
SCF cycle converged after 15 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
siesta: E_KS(eV) = -14952.4287
siesta: Atomic forces (eV/Ang):
1 0.959731 0.863352 0.670009
2 -0.641601 0.022213 -0.346563
3 -0.099948 -1.280527 -1.098311
4 -1.283762 0.153958 0.147787
5 0.886246 0.400269 0.077677
6 0.578778 -0.360723 -0.496145
7 -1.292498 0.125477 -1.873216
8 1.614878 -0.562425 1.518855
9 0.529284 -0.180717 0.290997
10 0.919708 -0.150380 1.248526
11 0.171708 -1.214109 -0.071417
12 -0.539872 -0.025583 -0.821554
13 0.580163 -0.479050 0.020358
14 -0.217214 0.440397 0.118424
15 -0.636830 0.192178 0.692328
16 -1.722148 -0.512610 1.303419
17 1.317537 -0.074493 -0.819715
18 -0.835773 0.512385 -0.327875
19 -0.578214 -1.103261 0.418153
20 -0.426252 0.359933 -0.026887
21 0.772473 0.340560 -0.212304
22 -0.289417 -0.104302 1.321632
23 0.116433 -0.007307 -1.172484
24 0.212350 0.745116 -0.446463
25 1.091551 -0.432603 0.028931
26 -0.123246 -0.246455 0.274293
27 -0.505685 -0.099263 0.200481
28 0.678218 0.128897 1.540695
29 -0.404757 0.297672 -0.709068
30 0.418814 0.392009 0.081828
31 0.128075 -2.575828 1.486782
32 -0.621482 0.133854 -0.732761
33 -0.102710 3.099376 -1.918464
34 0.511915 -0.891134 -0.228562
35 0.155111 0.824531 0.411634
36 -0.397935 0.957110 0.139317
37 -1.132374 0.618513 1.418790
38 -0.705670 -0.422080 -1.659218
39 1.917439 -0.875943 -0.569528
40 0.198580 0.637610 0.489955
41 -0.132035 -0.132502 0.289548
42 -0.301691 -0.508842 -0.960745
43 1.028956 -1.543060 -0.238772
44 -0.254361 0.830794 -0.770993
45 -1.136090 1.305821 0.898028
46 -1.970538 0.763978 1.174991
47 1.737563 -0.603688 -1.442456
48 0.494969 -0.043857 -0.248540
49 -0.174412 2.095618 -0.789895
50 -0.391648 -0.561650 0.345467
51 -0.264853 -1.236517 1.958620
52 -1.037425 -1.674610 -1.967161
53 0.815290 0.132984 1.493648
54 0.077424 0.472367 0.010078
55 -0.918632 -0.756738 0.847511
56 0.832608 0.154838 0.139347
57 0.033975 0.154669 -1.009080
58 1.053494 0.689003 -1.312393
59 -0.262166 0.032944 0.370384
60 -0.964762 0.180698 0.014061
61 -1.400589 -1.810039 -0.967754
62 0.013656 1.556663 0.520903
63 0.536947 1.290304 0.672825
64 -0.476979 0.149811 0.198933
65 -0.056581 -0.574004 0.224656
66 0.770159 -0.568128 0.140126
67 -0.679834 0.746224 0.955081
68 0.694904 0.178551 -0.394412
69 -0.140780 -0.333979 -1.444069
70 -0.118772 0.710920 0.513573
71 0.793346 0.236767 -2.035342
72 -0.288066 -0.523230 0.086516
73 2.003683 0.339815 0.815773
74 -0.169348 -0.661830 0.012581
75 -1.290640 1.100397 -0.819597
76 -0.861074 0.608851 -1.754554
77 0.486983 -1.055419 0.558667
78 0.237987 -0.045527 1.208453
79 0.357138 -0.945036 -0.379850
80 -0.097604 0.273990 -0.182614
81 -0.084311 0.101479 1.072455
82 -2.532464 1.290283 -1.600300
83 0.278662 -0.871019 1.835377
84 2.138507 -0.831424 0.178182
85 -1.508996 1.433483 0.131739
86 1.035586 -1.764945 -0.000474
87 -0.039065 -0.070173 -0.782672
88 0.007021 0.904161 -0.195322
89 -0.374828 -0.716028 0.860473
90 0.432551 -0.387341 0.197780
91 0.291660 0.179840 -0.589960
92 -0.112693 0.052212 -0.024515
93 -0.395758 -0.211799 0.821592
94 -0.748724 0.393341 1.792437
95 0.677256 -0.175163 -0.695899
96 0.991775 0.574933 -0.212891
----------------------------------------
Tot -0.162012 -0.024196 -0.110119
----------------------------------------
Max 3.099376
Res 0.873902 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 3.099376 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -24.16 -6.90 -10.84 -7.60 2.34 3.24
(Free)E + p*V (eV/cell) -14944.0590
Target enthalpy (eV/cell) -14952.4287
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.895 1.863 1.689 1.764 1.579
4 6.892 1.910 1.678 1.638 1.667
7 6.913 1.875 1.797 1.702 1.539
10 6.899 1.900 1.564 1.519 1.916
13 6.884 1.859 1.685 1.659 1.681
16 6.775 1.920 1.762 1.481 1.613
19 6.910 1.888 1.801 1.550 1.671
22 6.926 1.918 1.483 1.534 1.991
25 6.866 1.892 1.623 1.923 1.429
28 6.878 1.874 1.686 1.479 1.840
31 6.893 1.845 1.608 1.698 1.742
34 6.851 1.888 1.707 1.686 1.570
37 6.898 1.887 1.823 1.560 1.628
40 6.909 1.895 1.741 1.474 1.799
43 6.863 1.887 1.435 1.669 1.873
46 6.879 1.884 1.503 1.764 1.727
49 6.883 1.889 1.463 1.640 1.891
52 6.891 1.874 1.571 1.548 1.898
55 6.917 1.910 1.572 1.909 1.525
58 6.893 1.896 1.482 1.911 1.604
61 6.869 1.903 1.562 1.748 1.656
64 6.917 1.906 1.581 1.979 1.451
67 6.867 1.911 1.862 1.417 1.678
70 6.833 1.920 1.816 1.462 1.634
73 6.839 1.941 1.919 1.426 1.554
76 6.896 1.883 1.818 1.501 1.693
79 6.848 1.896 1.707 1.640 1.604
82 6.837 1.903 1.592 1.874 1.468
85 6.837 1.899 1.569 1.668 1.701
88 6.930 1.891 1.639 1.815 1.584
91 6.913 1.863 1.599 1.654 1.798
94 6.865 1.891 1.614 1.478 1.881
Species: H_lyp
Atom Qatom Qorb
1s
2 0.555 0.555
3 0.472 0.472
5 0.558 0.558
6 0.523 0.523
8 0.542 0.542
9 0.558 0.558
11 0.586 0.586
12 0.597 0.597
14 0.553 0.553
15 0.480 0.480
17 0.545 0.545
18 0.588 0.588
20 0.552 0.552
21 0.538 0.538
23 0.584 0.584
24 0.581 0.581
26 0.516 0.516
27 0.590 0.590
29 0.570 0.570
30 0.516 0.516
32 0.540 0.540
33 0.606 0.606
35 0.551 0.551
36 0.553 0.553
38 0.509 0.509
39 0.537 0.537
41 0.539 0.539
42 0.577 0.577
44 0.576 0.576
45 0.586 0.586
47 0.539 0.539
48 0.550 0.550
50 0.540 0.540
51 0.547 0.547
53 0.535 0.535
54 0.518 0.518
56 0.567 0.567
57 0.543 0.543
59 0.620 0.620
60 0.569 0.569
62 0.598 0.598
63 0.482 0.482
65 0.610 0.610
66 0.570 0.570
68 0.572 0.572
69 0.575 0.575
71 0.596 0.596
72 0.594 0.594
74 0.671 0.671
75 0.582 0.582
77 0.517 0.517
78 0.516 0.516
80 0.637 0.637
81 0.550 0.550
83 0.595 0.595
84 0.561 0.561
86 0.571 0.571
87 0.575 0.575
89 0.554 0.554
90 0.568 0.568
92 0.539 0.539
93 0.570 0.570
95 0.578 0.578
96 0.551 0.551
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 9
====================================
outcoor: Atomic coordinates (Ang):
0.19142709 3.65314686 6.45589787 1 1 O_lyp
-0.69714835 4.12395825 6.80447727 2 2 H_lyp
-0.03414815 2.90184272 5.76724355 2 3 H_lyp
1.41974378 7.00852738 6.97446435 1 4 O_lyp
2.11812548 7.82309033 6.96882238 2 5 H_lyp
0.94280049 7.31815418 7.99088898 2 6 H_lyp
6.98126968 0.22846388 6.69299122 1 7 O_lyp
7.67226352 0.02514735 7.45517962 2 8 H_lyp
6.13466197 0.82266697 7.07816884 2 9 H_lyp
6.05707712 9.45717597 1.14929907 1 10 O_lyp
6.16603237 10.39669369 0.55632036 2 11 H_lyp
6.57726721 9.79336437 2.31570964 2 12 H_lyp
5.97691746 7.27696041 2.77953937 1 13 O_lyp
6.21863359 8.03678617 2.00947944 2 14 H_lyp
5.11214171 7.63683021 3.33583857 2 15 H_lyp
0.21195225 3.96451214 2.46014822 1 16 O_lyp
-0.56886836 4.39132318 3.35299698 2 17 H_lyp
-0.48882849 3.67162813 1.64732880 2 18 H_lyp
0.59767414 7.06829871 4.26138393 1 19 O_lyp
0.81539455 7.00884123 5.38804528 2 20 H_lyp
-0.40046082 6.41335279 4.04613487 2 21 H_lyp
5.49492114 1.91151717 8.68879463 1 22 O_lyp
5.41582923 2.02149987 9.90282950 2 23 H_lyp
5.53549780 2.98469599 8.56734140 2 24 H_lyp
3.89520309 7.00328097 4.92751660 1 25 O_lyp
4.29873772 5.94814995 4.78085556 2 26 H_lyp
2.86339863 6.87450121 5.14805380 2 27 H_lyp
9.21028205 5.11295944 9.02868066 1 28 O_lyp
8.92539832 5.02762769 8.02539877 2 29 H_lyp
9.80748678 4.19138256 9.38624899 2 30 H_lyp
5.20377892 0.73908594 4.98214408 1 31 O_lyp
4.39183721 0.58192607 5.75130820 2 32 H_lyp
5.36506796 1.54868527 4.46213049 2 33 H_lyp
5.59772997 2.25110356 1.57420237 1 34 O_lyp
6.05115005 1.40179116 2.18667912 2 35 H_lyp
4.68855603 2.54151420 2.04655819 2 36 H_lyp
7.16430392 0.73069125 3.45222058 1 37 O_lyp
6.85997195 0.59708086 4.70352686 2 38 H_lyp
8.02121117 0.10676743 3.46344507 2 39 H_lyp
5.63225046 5.29047530 8.60690895 1 40 O_lyp
5.76602048 6.12890262 7.76231327 2 41 H_lyp
6.14953996 5.67419929 9.60658297 2 42 H_lyp
2.32289425 5.36168861 2.69568471 1 43 O_lyp
2.32399253 4.37975778 3.29629807 2 44 H_lyp
1.86833829 6.02027339 3.35192171 2 45 H_lyp
7.29294150 6.31095322 0.67777268 1 46 O_lyp
7.99457363 6.01075195 -0.00486058 2 47 H_lyp
7.04515772 7.39611901 0.65983741 2 48 H_lyp
3.01712777 0.59701065 6.21294879 1 49 O_lyp
2.87083835 1.70610831 6.59230293 2 50 H_lyp
3.01223991 -0.04894437 7.00088528 2 51 H_lyp
0.26015020 7.71190926 9.66839145 1 52 O_lyp
0.58021581 7.85510421 10.63544718 2 53 H_lyp
0.04262252 6.56371866 9.55402061 2 54 H_lyp
3.16316433 8.18572731 9.53425133 1 55 O_lyp
4.18608798 8.48928924 9.53968682 2 56 H_lyp
3.10830434 7.10113138 9.95605174 2 57 H_lyp
3.12349075 5.24010126 -0.03596927 1 58 O_lyp
2.78366536 4.20701739 0.04914977 2 59 H_lyp
4.28664348 5.14441754 -0.50655771 2 60 H_lyp
8.18998692 5.74453132 3.43316787 1 61 O_lyp
7.90825052 4.92942534 2.61001420 2 62 H_lyp
7.06562886 6.25879937 3.14537883 2 63 H_lyp
4.86591368 4.86529839 2.12779980 1 64 O_lyp
5.40527739 5.82600822 1.97620506 2 65 H_lyp
3.78342514 5.25302427 1.99305078 2 66 H_lyp
3.13732803 8.71570613 2.99676095 1 67 O_lyp
2.29121563 8.20264524 3.54361228 2 68 H_lyp
3.11733556 8.40424486 1.98543485 2 69 H_lyp
0.88672292 2.83059389 0.13033036 1 70 O_lyp
0.90755427 2.69083530 1.31133519 2 71 H_lyp
-0.05875570 2.26132216 -0.05325707 2 72 H_lyp
8.79365020 1.09291108 1.02255951 1 73 O_lyp
9.63801115 0.79664872 0.32307772 2 74 H_lyp
9.57919831 0.96552404 2.16725386 2 75 H_lyp
2.72334815 3.18899748 7.19434889 1 76 O_lyp
1.69336762 3.77354119 6.87580337 2 77 H_lyp
2.59295851 3.11247861 8.23941509 2 78 H_lyp
9.11694927 8.89675464 2.95246179 1 79 O_lyp
9.94344326 9.07271528 2.28190409 2 80 H_lyp
9.64676095 8.06115723 3.53034660 2 81 H_lyp
0.71544297 1.39026182 3.16441607 1 82 O_lyp
0.54198819 2.64610980 2.88882295 2 83 H_lyp
1.72959703 1.25673431 3.02874122 2 84 H_lyp
2.22896984 3.12192840 4.40950979 1 85 O_lyp
2.98973545 2.43665356 4.37918392 2 86 H_lyp
2.54558331 3.78948493 5.24771953 2 87 H_lyp
5.95500192 7.35414848 6.61699849 1 88 O_lyp
6.46251304 8.39647572 6.37410456 2 89 H_lyp
5.01305011 7.44661245 5.97845397 2 90 H_lyp
8.64061947 9.62899073 8.61504068 1 91 O_lyp
9.18679234 8.76682972 9.06314961 2 92 H_lyp
8.16755854 10.27179531 9.34295149 2 93 H_lyp
4.45451148 4.33320346 5.24227742 1 94 O_lyp
4.66396924 3.58978335 4.52126680 2 95 H_lyp
3.99014438 3.86860460 6.23192939 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 9
<sparsity:sparsity for geom step 9
nrows_g=192 nrows=1 sparsity=.0035 nnzs=129, refcount: 7>
<dData1D:(new from dSpData1D) n=129, refcount: 1>
refcount: 1>
new_DM -- step: 10
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 9
nrows_g=192 nrows=1 sparsity=.0035 nnzs=129, refcount: 9>
<dData2D:(temp array for extrapolation) n=129 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 12 1: 4
2 31: 40 22: 31 1: 3
3 32: 40 32: 40 1: 3
4 1: 10 1: 12 10: 12
5 9: 20 1: 6 5: 9
6 31: 40 1: 5 12: 17
7 26: 40 1: 9 18: 21
8 22: 30 32: 40 9: 11
9 11: 20 1: 7 13: 17
10 18: 25 1: 9 18: 21
11 12: 21 22: 29 1: 3
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 11: 21 30: 34 13: 17
16 1: 8 1: 6 5: 9
17 1: 10 1: 7 21: 27
18 22: 30 22: 31 1: 3
19 1: 8 7: 12 5: 9
20 11: 20 1: 12 10: 12
21 21: 30 5: 9 12: 17
22 21: 30 1: 4 12: 17
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 21: 30 11: 17 4: 8
26 32: 40 1: 10 1: 3
27 1: 9 1: 13 28: 32
28 1: 12 22: 25 13: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 1: 10 13: 21 10: 12
32 22: 30 27: 31 4: 8
33 26: 40 1: 4 22: 29
34 11: 20 13: 21 1: 3
35 9: 20 7: 12 5: 9
36 31: 40 6: 9 12: 17
37 21: 30 10: 15 12: 17
38 1: 10 7: 12 13: 17
39 11: 17 8: 12 21: 27
40 26: 40 10: 15 21: 29
41 1: 10 8: 12 21: 27
42 11: 20 13: 21 10: 12
43 32: 40 1: 5 4: 8
44 18: 28 1: 10 30: 33
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 31 32: 40 1: 3
48 22: 30 22: 26 4: 8
49 1: 9 8: 13 33: 40
50 31: 40 1: 9 9: 11
51 11: 20 13: 16 4: 9
52 31: 40 10: 21 9: 11
53 11: 17 1: 7 21: 27
54 31: 40 10: 14 12: 17
55 26: 40 10: 21 18: 20
56 32: 40 6: 10 4: 8
57 21: 30 11: 21 1: 3
58 32: 40 32: 36 4: 8
59 9: 17 14: 21 28: 31
60 28: 40 11: 21 30: 34
61 18: 27 11: 21 30: 33
62 31: 40 11: 21 1: 3
63 22: 30 27: 31 12: 17
64 10: 17 18: 21 21: 27
65 18: 27 11: 16 34: 40
66 21: 30 1: 9 9: 11
67 1: 10 17: 21 5: 9
68 21: 30 10: 21 9: 11
69 21: 30 16: 21 12: 17
70 11: 20 13: 17 13: 17
71 10: 17 13: 17 21: 27
72 26: 40 16: 21 21: 29
73 18: 25 15: 21 22: 29
74 21: 31 5: 10 4: 8
75 12: 19 30: 40 18: 20
76 1: 11 22: 25 5: 9
77 1: 8 14: 17 33: 40
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 1: 11 26: 29 5: 9
81 1: 10 13: 21 1: 4
82 31: 40 17: 21 4: 8
83 22: 30 22: 31 9: 11
84 31: 40 15: 21 12: 17
85 21: 31 1: 10 1: 3
86 22: 30 22: 26 12: 17
87 1: 9 13: 21 18: 20
88 29: 40 22: 26 22: 29
89 10: 17 1: 13 28: 31
90 9: 17 14: 17 32: 40
91 18: 25 6: 9 22: 29
92 11: 21 30: 33 5: 9
93 9: 17 18: 21 32: 40
94 20: 30 22: 27 35: 40
95 1: 8 18: 21 33: 40
96 21: 31 1: 4 4: 8
97 28: 40 11: 15 35: 40
98 1: 11 22: 29 1: 4
99 12: 21 22: 26 4: 9
100 10: 17 13: 21 18: 20
101 31: 40 22: 26 12: 17
102 1: 10 22: 29 18: 20
103 29: 40 22: 32 18: 21
104 1: 10 25: 29 21: 27
105 18: 25 1: 5 22: 29
106 13: 21 22: 29 10: 12
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 1: 9 18: 21 21: 27
112 1: 10 22: 24 33: 40
113 1: 11 30: 34 21: 27
114 1: 8 14: 21 28: 32
115 31: 40 22: 26 4: 8
116 31: 40 22: 31 9: 11
117 18: 25 10: 14 22: 29
118 1: 12 26: 29 13: 17
119 20: 28 22: 32 18: 20
120 20: 28 27: 32 21: 29
121 20: 28 22: 26 21: 29
122 11: 19 25: 29 21: 27
123 11: 17 1: 12 18: 20
124 1: 10 22: 24 21: 27
125 31: 40 22: 31 30: 33
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 21: 30 18: 21 4: 8
129 18: 25 10: 21 18: 21
130 1: 9 13: 17 21: 27
131 31: 40 27: 31 4: 8
132 1: 12 22: 29 10: 12
133 18: 28 1: 4 34: 40
134 31: 40 27: 31 12: 17
135 11: 19 22: 29 18: 20
136 29: 40 27: 32 22: 29
137 11: 20 17: 21 4: 9
138 12: 19 30: 34 21: 27
139 1: 10 22: 29 28: 32
140 1: 10 18: 21 13: 17
141 1: 10 25: 29 33: 40
142 10: 19 30: 33 32: 40
143 31: 40 28: 31 34: 40
144 11: 20 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 11: 20 8: 12 13: 17
147 1: 10 30: 34 5: 9
148 11: 21 30: 40 10: 12
149 31: 40 32: 36 12: 17
150 22: 30 32: 35 12: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 20: 27 33: 36 21: 29
154 1: 10 13: 16 5: 9
155 1: 9 30: 40 28: 32
156 20: 29 32: 40 30: 33
157 30: 40 32: 40 30: 34
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 11: 19 22: 24 21: 27
161 1: 10 30: 40 1: 4
162 22: 31 32: 36 4: 8
163 1: 10 35: 40 5: 9
164 1: 10 30: 40 10: 12
165 11: 21 35: 40 13: 17
166 22: 30 36: 40 12: 17
167 20: 27 33: 40 18: 20
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 21: 27
170 1: 10 30: 34 13: 17
171 10: 19 30: 40 28: 31
172 12: 21 27: 29 4: 9
173 10: 19 34: 40 32: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 13: 21 26: 29 13: 17
177 1: 10 1: 6 13: 17
178 22: 31 37: 40 4: 8
179 11: 21 34: 40 5: 9
180 31: 40 32: 40 9: 11
181 1: 10 35: 40 13: 17
182 31: 40 37: 40 12: 17
183 28: 40 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 1: 8 1: 12 1: 4
186 31: 40 11: 16 4: 8
187 20: 27 37: 40 21: 29
188 32: 40 37: 40 4: 8
189 1: 9 35: 40 33: 40
190 20: 29 36: 40 34: 40
191 1: 10 13: 17 13: 17
192 13: 21 22: 25 13: 17
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 68 x 60 = 277440
PhiOnMesh: Number of (b)points on node 0 = 576
PhiOnMesh: nlist on node 0 = 9512
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14952.068122 -14952.017466 -14952.017466 0.076329 -4.781238 0.598779
scf: 2 -14951.842739 -14951.992883 -14951.992883 0.047568 -4.786135 0.968511
scf: 3 -14952.098555 -14952.063770 -14952.063770 0.026207 -4.788889 0.158943
scf: 4 -14952.068258 -14952.066786 -14952.066786 0.006268 -4.809721 0.032135
scf: 5 -14952.066928 -14952.066861 -14952.066861 0.000480 -4.810686 0.026444
scf: 6 -14952.067036 -14952.066968 -14952.066968 0.000824 -4.816098 0.013396
scf: 7 -14952.066996 -14952.066983 -14952.066983 0.000137 -4.817289 0.010624
scf: 8 -14952.067005 -14952.066996 -14952.066996 0.000289 -4.818714 0.007530
scf: 9 -14952.067001 -14952.066999 -14952.066999 0.000111 -4.818566 0.004900
scf: 10 -14952.067003 -14952.067001 -14952.067001 0.000104 -4.818360 0.003961
scf: 11 -14952.067003 -14952.067002 -14952.067002 0.000123 -4.818312 0.002145
scf: 12 -14952.067003 -14952.067002 -14952.067002 0.000021 -4.818422 0.001823
scf: 13 -14952.067003 -14952.067003 -14952.067003 0.000058 -4.818878 0.001105
scf: 14 -14952.067003 -14952.067003 -14952.067003 0.000010 -4.818941 0.001031
scf: 15 -14952.067003 -14952.067003 -14952.067003 0.000026 -4.819014 0.000562
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000255308
max |H_out - H_in| (eV) : 0.0005616552
SCF cycle converged after 15 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 48
siesta: E_KS(eV) = -14952.0670
siesta: Atomic forces (eV/Ang):
1 1.642362 1.481941 1.192573
2 -0.943839 0.133300 -0.209112
3 -0.360272 -1.976037 -1.651927
4 -1.457692 -0.024061 0.570520
5 1.219885 0.694310 -0.057782
6 0.401669 -0.477655 -0.623352
7 -1.934957 0.113514 -2.769575
8 2.081530 -0.628773 2.043960
9 0.439091 -0.034769 0.398965
10 0.953889 -0.158940 1.528665
11 0.168102 -1.150710 0.051388
12 -0.549426 -0.049358 -1.180550
13 1.026951 -0.935119 -0.162416
14 -0.212808 0.700635 -0.072259
15 -0.920397 0.330761 0.884237
16 -2.190272 -0.334404 1.855440
17 1.202739 0.005395 -1.432550
18 -0.498714 0.388992 -0.052311
19 -0.574380 -1.443089 0.332029
20 -0.477034 0.355646 -0.041008
21 0.889037 0.440347 -0.075949
22 -0.366743 -0.388576 1.803124
23 0.206968 -0.298298 -1.288526
24 0.260108 1.196399 -0.667640
25 1.429340 -0.373727 -0.246995
26 -0.092126 -0.200161 0.352107
27 -0.942422 -0.106764 0.284078
28 0.872224 0.295886 2.295110
29 -0.566285 0.157835 -1.372464
30 0.459593 0.231836 -0.025314
31 0.136656 -4.090464 2.505276
32 -0.521289 0.369180 -0.994440
33 0.295356 4.361182 -2.595127
34 0.854806 -1.062490 -0.430464
35 0.119106 0.851696 0.159568
36 -0.673311 1.023603 0.334649
37 -1.865440 0.686668 1.913854
38 -0.722863 -0.172050 -1.833353
39 2.406191 -1.258632 -0.651186
40 0.089073 0.624604 0.801784
41 -0.085156 -0.157277 0.446677
42 -0.288957 -0.438552 -1.320882
43 1.384291 -2.393971 -0.617013
44 -0.198091 0.960479 -0.884865
45 -1.577447 1.929838 1.438268
46 -2.906050 1.071468 2.172452
47 2.529085 -0.846533 -2.156618
48 0.568006 -0.062086 -0.326073
49 0.037167 2.984585 -1.815277
50 -0.330411 -0.734568 0.386813
51 -0.314429 -2.001824 2.973381
52 -1.249654 -2.111271 -3.057397
53 1.169603 0.308842 2.407644
54 0.058371 0.666971 0.042008
55 -1.525867 -1.111005 0.828063
56 1.340896 0.271671 0.158687
57 0.077767 0.333712 -0.998765
58 1.643633 0.268562 -1.191750
59 -0.207040 0.315562 0.371269
60 -1.324079 0.305735 -0.144507
61 -1.617909 -2.159138 -1.607427
62 0.483867 1.697575 1.028034
63 0.612042 1.260240 0.903628
64 -0.618092 0.389939 -0.026588
65 -0.113543 -0.711244 0.297170
66 0.766397 -0.526685 0.245977
67 -0.708282 0.704295 1.713763
68 0.757081 0.302223 -0.526931
69 -0.149990 -0.524085 -1.956844
70 0.044839 0.784604 0.963510
71 0.694998 0.383446 -2.316887
72 -0.538999 -0.690566 0.094853
73 2.764033 0.433571 1.002131
74 -0.669233 -0.518403 0.403148
75 -1.147695 0.420759 -1.160826
76 -0.993910 0.789129 -2.693376
77 0.669252 -1.179771 0.594548
78 0.123715 -0.094027 1.951505
79 0.104117 -0.871050 -0.132883
80 0.030246 0.556725 -0.352118
81 -0.245248 0.507499 0.825286
82 -3.630246 2.265170 -1.456305
83 0.309340 -1.321498 1.381808
84 2.845037 -1.044414 -0.017640
85 -2.313175 2.556962 0.188602
86 2.043548 -2.640051 -0.028057
87 0.007882 -0.120075 -0.661586
88 0.095636 1.133921 -0.266021
89 -0.374360 -0.899305 0.937848
90 0.401001 -0.434408 0.254542
91 0.211250 0.104800 -1.124275
92 -0.119701 0.079014 0.185206
93 -0.328172 -0.155304 1.031028
94 -1.152480 0.851234 2.322323
95 0.784520 -0.704482 -1.090090
96 0.975602 0.519637 -0.506618
----------------------------------------
Tot 0.089414 -0.013776 -0.014419
----------------------------------------
Max 4.361182
Res 1.193947 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 4.361182 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -20.89 -6.05 -8.51 -9.06 5.00 3.36
(Free)E + p*V (eV/cell) -14944.9876
Target enthalpy (eV/cell) -14952.0670
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.907 1.854 1.692 1.766 1.596
4 6.894 1.910 1.698 1.624 1.663
7 6.924 1.868 1.800 1.714 1.541
10 6.907 1.900 1.562 1.523 1.922
13 6.888 1.852 1.696 1.663 1.677
16 6.778 1.922 1.759 1.484 1.613
19 6.909 1.886 1.791 1.555 1.677
22 6.926 1.922 1.478 1.536 1.990
25 6.874 1.887 1.630 1.926 1.430
28 6.889 1.867 1.697 1.488 1.837
31 6.917 1.831 1.621 1.708 1.758
34 6.860 1.883 1.720 1.683 1.574
37 6.892 1.891 1.810 1.565 1.625
40 6.907 1.896 1.746 1.475 1.790
43 6.869 1.885 1.436 1.683 1.864
46 6.894 1.870 1.515 1.789 1.720
49 6.893 1.882 1.472 1.653 1.886
52 6.899 1.869 1.574 1.562 1.894
55 6.924 1.906 1.565 1.923 1.529
58 6.896 1.902 1.463 1.927 1.605
61 6.869 1.908 1.587 1.719 1.654
64 6.915 1.909 1.581 1.971 1.454
67 6.876 1.907 1.841 1.424 1.703
70 6.837 1.922 1.803 1.468 1.644
73 6.846 1.948 1.901 1.469 1.529
76 6.899 1.883 1.816 1.506 1.695
79 6.861 1.897 1.730 1.634 1.600
82 6.850 1.897 1.619 1.877 1.457
85 6.855 1.897 1.567 1.691 1.700
88 6.927 1.890 1.633 1.809 1.594
91 6.920 1.856 1.604 1.670 1.790
94 6.876 1.886 1.628 1.474 1.888
Species: H_lyp
Atom Qatom Qorb
1s
2 0.543 0.543
3 0.469 0.469
5 0.554 0.554
6 0.520 0.520
8 0.536 0.536
9 0.552 0.552
11 0.585 0.585
12 0.601 0.601
14 0.546 0.546
15 0.475 0.475
17 0.539 0.539
18 0.576 0.576
20 0.549 0.549
21 0.543 0.543
23 0.582 0.582
24 0.583 0.583
26 0.514 0.514
27 0.585 0.585
29 0.565 0.565
30 0.514 0.514
32 0.531 0.531
33 0.596 0.596
35 0.545 0.545
36 0.553 0.553
38 0.508 0.508
39 0.530 0.530
41 0.537 0.537
42 0.578 0.578
44 0.577 0.577
45 0.579 0.579
47 0.530 0.530
48 0.539 0.539
50 0.534 0.534
51 0.542 0.542
53 0.533 0.533
54 0.519 0.519
56 0.564 0.564
57 0.542 0.542
59 0.623 0.623
60 0.576 0.576
62 0.596 0.596
63 0.485 0.485
65 0.608 0.608
66 0.570 0.570
68 0.571 0.571
69 0.568 0.568
71 0.594 0.594
72 0.594 0.594
74 0.676 0.676
75 0.577 0.577
77 0.514 0.514
78 0.512 0.512
80 0.632 0.632
81 0.558 0.558
83 0.585 0.585
84 0.552 0.552
86 0.559 0.559
87 0.569 0.569
89 0.556 0.556
90 0.566 0.566
92 0.538 0.538
93 0.564 0.564
95 0.572 0.572
96 0.541 0.541
mulliken: Qtot = 256.000
====================================
Begin CG opt. move = 10
====================================
outcoor: Atomic coordinates (Ang):
0.20575730 3.66387011 6.46398304 1 1 O_lyp
-0.69453581 4.12604672 6.81837369 2 2 H_lyp
-0.04877946 2.90003883 5.77096044 2 3 H_lyp
1.43223203 6.99664840 7.00180518 1 4 O_lyp
2.11606050 7.83254001 6.95707069 2 5 H_lyp
0.92499680 7.31713736 7.99132793 2 6 H_lyp
6.95940251 0.22829568 6.67191899 1 7 O_lyp
7.65723675 0.03681714 7.44557538 2 8 H_lyp
6.12194103 0.83184792 7.07447005 2 9 H_lyp
6.05034036 9.47665522 1.15696603 1 10 O_lyp
6.16056434 10.42203169 0.57336129 2 11 H_lyp
6.57414218 9.79075310 2.29147118 2 12 H_lyp
5.98535452 7.26430609 2.76619168 1 13 O_lyp
6.22171206 8.03609078 2.00260574 2 14 H_lyp
5.11721374 7.63903508 3.32593624 2 15 H_lyp
0.19556497 3.99039961 2.48197020 1 16 O_lyp
-0.59995853 4.40169418 3.31376244 2 17 H_lyp
-0.45763520 3.65157497 1.66009189 2 18 H_lyp
0.59787714 7.06636809 4.25321326 1 19 O_lyp
0.81804117 7.00076715 5.37786123 2 20 H_lyp
-0.39503734 6.42119874 4.06318933 2 21 H_lyp
5.49655724 1.90663412 8.70709308 1 22 O_lyp
5.42119192 2.00173389 9.90779860 2 23 H_lyp
5.53284937 2.98653588 8.56258369 2 24 H_lyp
3.88808812 7.01585201 4.90091584 1 25 O_lyp
4.29900303 5.96365778 4.77845413 2 26 H_lyp
2.85444768 6.87552567 5.14888623 2 27 H_lyp
9.20762203 5.11215628 9.03094081 1 28 O_lyp
8.93007858 5.01018974 8.01284279 2 29 H_lyp
9.79509891 4.18272945 9.37469959 2 30 H_lyp
5.24437674 0.71259116 5.00820805 1 31 O_lyp
4.41664770 0.59380999 5.74812849 2 32 H_lyp
5.37554430 1.54358438 4.47496685 2 33 H_lyp
5.60501600 2.25561190 1.56849255 1 34 O_lyp
6.04512840 1.38655580 2.15631483 2 35 H_lyp
4.68511086 2.52044842 2.05310576 2 36 H_lyp
7.13664567 0.71925318 3.48110666 1 37 O_lyp
6.86830917 0.61777268 4.71070912 2 38 H_lyp
8.00741709 0.10487937 3.46846430 2 39 H_lyp
5.62943110 5.29042893 8.61558010 1 40 O_lyp
5.77049885 6.12087523 7.77770244 2 41 H_lyp
6.14995432 5.68496425 9.59410066 2 42 H_lyp
2.30967996 5.34189658 2.68991482 1 43 O_lyp
2.33129584 4.37456211 3.30260503 2 44 H_lyp
1.87696709 6.02451410 3.36004676 2 45 H_lyp
7.29202990 6.30838772 0.70892132 1 46 O_lyp
7.98859242 6.01947546 -0.01157146 2 47 H_lyp
7.04104711 7.39025883 0.66053007 2 48 H_lyp
3.03018083 0.59950142 6.19069291 1 49 O_lyp
2.88490923 1.69458849 6.58218178 2 50 H_lyp
3.01265466 -0.04954524 7.00317912 2 51 H_lyp
0.28136892 7.71418883 9.65276548 1 52 O_lyp
0.57173924 7.86033593 10.64730165 2 53 H_lyp
0.04366076 6.57603937 9.55634056 2 54 H_lyp
3.15532290 8.17887283 9.51748119 1 55 O_lyp
4.18776382 8.48901288 9.54037232 2 56 H_lyp
3.11128242 7.11447170 9.97399981 2 57 H_lyp
3.16592837 5.22250359 0.01540864 1 58 O_lyp
2.79275173 4.20619931 0.04358224 2 59 H_lyp
4.27402409 5.14382127 -0.50278258 2 60 H_lyp
8.19561780 5.74779251 3.40841107 1 61 O_lyp
7.96041010 4.90279282 2.63559050 2 62 H_lyp
7.07881763 6.22646698 3.14794446 2 63 H_lyp
4.85060931 4.87723724 2.08943915 1 64 O_lyp
5.39991853 5.82975528 1.97225848 2 65 H_lyp
3.76904779 5.26817163 1.99105553 2 66 H_lyp
3.15317373 8.69212862 3.02127669 1 67 O_lyp
2.28157628 8.20514769 3.54324246 2 68 H_lyp
3.11726499 8.40325029 1.99293557 2 69 H_lyp
0.88833821 2.81639857 0.16324662 1 70 O_lyp
0.88419687 2.69396257 1.33314752 2 71 H_lyp
-0.05897495 2.26510958 -0.05238759 2 72 H_lyp
8.82333784 1.05735967 1.07740494 1 73 O_lyp
9.62622908 0.80973955 0.34063123 2 74 H_lyp
9.58499270 0.87852990 2.14739317 2 75 H_lyp
2.72062752 3.19637775 7.18513338 1 76 O_lyp
1.70729338 3.78052737 6.86866659 2 77 H_lyp
2.58152278 3.11007593 8.24274042 2 78 H_lyp
9.11014019 8.93669995 2.95186573 1 79 O_lyp
9.92726787 9.13783442 2.26823309 2 80 H_lyp
9.63611973 8.08947898 3.49248665 2 81 H_lyp
0.70554449 1.43440757 3.17625901 1 82 O_lyp
0.54178969 2.62718493 2.83860568 2 83 H_lyp
1.72279803 1.25797622 3.01354331 2 84 H_lyp
2.24251569 3.14937773 4.41288358 1 85 O_lyp
3.00852044 2.43816185 4.37814032 2 86 H_lyp
2.55496158 3.78791515 5.27316946 2 87 H_lyp
5.95788022 7.35895681 6.60952031 1 88 O_lyp
6.46509705 8.39100375 6.36260335 2 89 H_lyp
5.00920374 7.45173980 5.98219870 2 90 H_lyp
8.62610855 9.61970080 8.59856958 1 91 O_lyp
9.18509002 8.77460186 9.07546439 2 92 H_lyp
8.18228020 10.27535649 9.33706329 2 93 H_lyp
4.42725782 4.33504499 5.23267134 1 94 O_lyp
4.65343065 3.56688930 4.52309785 2 95 H_lyp
3.96734871 3.85729579 6.20771383 2 96 H_lyp
outcell: Unit cell vectors (Ang):
9.865000 0.000000 0.000000
0.000000 9.865000 0.000000
0.000000 0.000000 9.865000
outcell: Cell vector modules (Ang) : 9.865000 9.865000 9.865000
outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000
outcell: Cell volume (Ang**3) : 960.0443
Gamma-point calculation with multiply-connected orbital pairs
Gamma-point calculation with multiply-connected orbital pairs
Folding of H and S implicitly performed
Folding of H and S implicitly performed
<dSpData1D:S at geom step 10
<sparsity:sparsity for geom step 10
nrows_g=192 nrows=1 sparsity=.0035 nnzs=128, refcount: 7>
<dData1D:(new from dSpData1D) n=128, refcount: 1>
refcount: 1>
new_DM -- step: 11
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
<sparsity:sparsity for geom step 10
nrows_g=192 nrows=1 sparsity=.0035 nnzs=128, refcount: 9>
<dData2D:(temp array for extrapolation) n=128 m=1, refcount: 1>
refcount: 1>
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
New grid distribution: 1
1 1: 40 1: 4 1: 3
2 1: 40 1: 4 4: 6
3 1: 40 1: 4 7: 9
4 1: 40 1: 4 10: 12
5 1: 40 1: 4 13: 15
6 1: 40 1: 4 16: 18
7 1: 40 1: 4 19: 21
8 1: 40 1: 4 22: 24
9 1: 40 1: 4 25: 26
10 1: 40 1: 4 27: 28
11 1: 40 1: 4 29: 30
12 1: 40 1: 4 31: 32
13 1: 40 1: 4 33: 34
14 1: 40 1: 4 35: 36
15 1: 40 1: 4 37: 38
16 1: 40 1: 4 39: 40
17 1: 40 5: 8 1: 3
18 1: 40 5: 8 4: 6
19 1: 40 5: 8 7: 9
20 1: 40 5: 8 10: 12
21 1: 40 5: 8 13: 15
22 1: 40 5: 8 16: 18
23 1: 40 5: 8 19: 21
24 1: 40 5: 8 22: 24
25 1: 40 5: 8 25: 26
26 1: 40 5: 8 27: 28
27 1: 40 5: 8 29: 30
28 1: 40 5: 8 31: 32
29 1: 40 5: 8 33: 34
30 1: 40 5: 8 35: 36
31 1: 40 5: 8 37: 38
32 1: 40 5: 8 39: 40
33 1: 40 9: 12 1: 3
34 1: 40 9: 12 4: 6
35 1: 40 9: 12 7: 9
36 1: 40 9: 12 10: 12
37 1: 40 9: 12 13: 15
38 1: 40 9: 12 16: 18
39 1: 40 9: 12 19: 21
40 1: 40 9: 12 22: 24
41 1: 40 9: 12 25: 26
42 1: 40 9: 12 27: 28
43 1: 40 9: 12 29: 30
44 1: 40 9: 12 31: 32
45 1: 40 9: 12 33: 34
46 1: 40 9: 12 35: 36
47 1: 40 9: 12 37: 38
48 1: 40 9: 12 39: 40
49 1: 40 13: 16 1: 3
50 1: 40 13: 16 4: 6
51 1: 40 13: 16 7: 9
52 1: 40 13: 16 10: 12
53 1: 40 13: 16 13: 15
54 1: 40 13: 16 16: 18
55 1: 40 13: 16 19: 21
56 1: 40 13: 16 22: 24
57 1: 40 13: 16 25: 26
58 1: 40 13: 16 27: 28
59 1: 40 13: 16 29: 30
60 1: 40 13: 16 31: 32
61 1: 40 13: 16 33: 34
62 1: 40 13: 16 35: 36
63 1: 40 13: 16 37: 38
64 1: 40 13: 16 39: 40
65 1: 40 17: 19 1: 3
66 1: 40 17: 19 4: 6
67 1: 40 17: 19 7: 9
68 1: 40 17: 19 10: 12
69 1: 40 17: 19 13: 15
70 1: 40 17: 19 16: 18
71 1: 40 17: 19 19: 21
72 1: 40 17: 19 22: 24
73 1: 40 17: 19 25: 26
74 1: 40 17: 19 27: 28
75 1: 40 17: 19 29: 30
76 1: 40 17: 19 31: 32
77 1: 40 17: 19 33: 34
78 1: 40 17: 19 35: 36
79 1: 40 17: 19 37: 38
80 1: 40 17: 19 39: 40
81 1: 40 20: 22 1: 3
82 1: 40 20: 22 4: 6
83 1: 40 20: 22 7: 9
84 1: 40 20: 22 10: 12
85 1: 40 20: 22 13: 15
86 1: 40 20: 22 16: 18
87 1: 40 20: 22 19: 21
88 1: 40 20: 22 22: 24
89 1: 40 20: 22 25: 26
90 1: 40 20: 22 27: 28
91 1: 40 20: 22 29: 30
92 1: 40 20: 22 31: 32
93 1: 40 20: 22 33: 34
94 1: 40 20: 22 35: 36
95 1: 40 20: 22 37: 38
96 1: 40 20: 22 39: 40
97 1: 40 23: 25 1: 3
98 1: 40 23: 25 4: 6
99 1: 40 23: 25 7: 9
100 1: 40 23: 25 10: 12
101 1: 40 23: 25 13: 15
102 1: 40 23: 25 16: 18
103 1: 40 23: 25 19: 21
104 1: 40 23: 25 22: 24
105 1: 40 23: 25 25: 26
106 1: 40 23: 25 27: 28
107 1: 40 23: 25 29: 30
108 1: 40 23: 25 31: 32
109 1: 40 23: 25 33: 34
110 1: 40 23: 25 35: 36
111 1: 40 23: 25 37: 38
112 1: 40 23: 25 39: 40
113 1: 40 26: 28 1: 3
114 1: 40 26: 28 4: 6
115 1: 40 26: 28 7: 9
116 1: 40 26: 28 10: 12
117 1: 40 26: 28 13: 15
118 1: 40 26: 28 16: 18
119 1: 40 26: 28 19: 21
120 1: 40 26: 28 22: 24
121 1: 40 26: 28 25: 26
122 1: 40 26: 28 27: 28
123 1: 40 26: 28 29: 30
124 1: 40 26: 28 31: 32
125 1: 40 26: 28 33: 34
126 1: 40 26: 28 35: 36
127 1: 40 26: 28 37: 38
128 1: 40 26: 28 39: 40
129 1: 40 29: 31 1: 3
130 1: 40 29: 31 4: 6
131 1: 40 29: 31 7: 9
132 1: 40 29: 31 10: 12
133 1: 40 29: 31 13: 15
134 1: 40 29: 31 16: 18
135 1: 40 29: 31 19: 21
136 1: 40 29: 31 22: 24
137 1: 40 29: 31 25: 26
138 1: 40 29: 31 27: 28
139 1: 40 29: 31 29: 30
140 1: 40 29: 31 31: 32
141 1: 40 29: 31 33: 34
142 1: 40 29: 31 35: 36
143 1: 40 29: 31 37: 38
144 1: 40 29: 31 39: 40
145 1: 40 32: 34 1: 3
146 1: 40 32: 34 4: 6
147 1: 40 32: 34 7: 9
148 1: 40 32: 34 10: 12
149 1: 40 32: 34 13: 15
150 1: 40 32: 34 16: 18
151 1: 40 32: 34 19: 21
152 1: 40 32: 34 22: 24
153 1: 40 32: 34 25: 26
154 1: 40 32: 34 27: 28
155 1: 40 32: 34 29: 30
156 1: 40 32: 34 31: 32
157 1: 40 32: 34 33: 34
158 1: 40 32: 34 35: 36
159 1: 40 32: 34 37: 38
160 1: 40 32: 34 39: 40
161 1: 40 35: 37 1: 3
162 1: 40 35: 37 4: 6
163 1: 40 35: 37 7: 9
164 1: 40 35: 37 10: 12
165 1: 40 35: 37 13: 15
166 1: 40 35: 37 16: 18
167 1: 40 35: 37 19: 21
168 1: 40 35: 37 22: 24
169 1: 40 35: 37 25: 26
170 1: 40 35: 37 27: 28
171 1: 40 35: 37 29: 30
172 1: 40 35: 37 31: 32
173 1: 40 35: 37 33: 34
174 1: 40 35: 37 35: 36
175 1: 40 35: 37 37: 38
176 1: 40 35: 37 39: 40
177 1: 40 38: 40 1: 3
178 1: 40 38: 40 4: 6
179 1: 40 38: 40 7: 9
180 1: 40 38: 40 10: 12
181 1: 40 38: 40 13: 15
182 1: 40 38: 40 16: 18
183 1: 40 38: 40 19: 21
184 1: 40 38: 40 22: 24
185 1: 40 38: 40 25: 26
186 1: 40 38: 40 27: 28
187 1: 40 38: 40 29: 30
188 1: 40 38: 40 31: 32
189 1: 40 38: 40 33: 34
190 1: 40 38: 40 35: 36
191 1: 40 38: 40 37: 38
192 1: 40 38: 40 39: 40
InitMesh: MESH = 80 x 80 x 80 = 512000
InitMesh: (bp) = 40 x 40 x 40 = 64000
InitMesh: Mesh cutoff (required, used) = 150.000 181.755 Ry
ExtMesh (bp) on 0 = 96 x 60 x 59 = 339840
New grid distribution: 2
1 9: 20 1: 13 1: 4
2 31: 40 22: 31 1: 3
3 11: 20 13: 17 13: 17
4 11: 20 1: 12 10: 12
5 11: 20 1: 7 13: 17
6 1: 10 1: 6 13: 17
7 26: 40 1: 9 18: 21
8 11: 17 8: 12 21: 27
9 11: 17 1: 7 21: 27
10 11: 21 30: 34 13: 17
11 32: 40 32: 40 1: 3
12 29: 40 1: 10 30: 34
13 10: 17 1: 8 32: 40
14 29: 40 1: 5 35: 40
15 32: 40 1: 10 1: 3
16 12: 21 22: 29 1: 3
17 1: 10 1: 7 21: 27
18 11: 20 13: 21 10: 12
19 11: 20 14: 21 1: 3
20 1: 10 1: 12 10: 12
21 1: 8 1: 6 5: 9
22 18: 25 1: 9 18: 21
23 1: 10 1: 12 18: 20
24 26: 40 5: 9 22: 29
25 31: 40 11: 21 1: 3
26 22: 30 22: 26 12: 17
27 1: 9 1: 13 28: 32
28 21: 30 1: 4 12: 17
29 1: 9 1: 7 33: 40
30 29: 40 6: 10 35: 40
31 22: 30 22: 31 1: 3
32 1: 12 22: 25 13: 17
33 26: 40 1: 4 22: 29
34 1: 8 7: 13 5: 9
35 9: 20 8: 13 5: 9
36 31: 40 6: 9 12: 17
37 1: 10 7: 12 13: 17
38 11: 20 8: 12 13: 17
39 18: 25 10: 21 18: 21
40 26: 40 10: 15 21: 29
41 1: 10 8: 12 21: 27
42 22: 31 32: 40 1: 3
43 22: 30 22: 26 4: 8
44 18: 27 11: 21 30: 33
45 10: 17 9: 13 32: 40
46 18: 28 5: 10 34: 40
47 22: 30 27: 31 12: 17
48 32: 40 1: 5 4: 8
49 18: 28 1: 10 30: 33
50 21: 30 11: 17 4: 8
51 11: 20 14: 17 4: 9
52 1: 10 13: 21 10: 12
53 21: 31 5: 10 4: 8
54 1: 10 13: 17 13: 17
55 26: 40 10: 21 18: 20
56 10: 17 13: 17 21: 27
57 21: 31 1: 10 1: 3
58 32: 40 6: 10 4: 8
59 9: 17 14: 21 28: 31
60 28: 40 11: 21 30: 34
61 1: 9 8: 13 33: 40
62 21: 30 11: 21 1: 3
63 31: 40 1: 9 9: 11
64 11: 21 30: 33 5: 9
65 18: 27 11: 16 34: 40
66 32: 40 10: 14 12: 17
67 31: 40 17: 21 4: 8
68 32: 40 10: 21 9: 11
69 32: 40 15: 21 12: 17
70 21: 30 1: 9 9: 11
71 1: 9 13: 21 18: 20
72 26: 40 16: 21 21: 29
73 18: 25 15: 21 22: 29
74 1: 11 22: 29 1: 3
75 21: 31 1: 4 4: 8
76 9: 17 14: 17 32: 40
77 1: 11 26: 29 4: 9
78 28: 40 16: 21 35: 40
79 18: 27 17: 21 34: 40
80 22: 30 32: 35 12: 17
81 9: 20 1: 7 5: 9
82 1: 10 14: 21 1: 4
83 11: 20 18: 21 4: 9
84 1: 12 22: 29 10: 12
85 10: 17 1: 13 28: 31
86 18: 25 10: 14 22: 29
87 12: 19 30: 40 18: 20
88 10: 17 18: 21 21: 27
89 1: 8 1: 13 1: 4
90 1: 11 22: 25 4: 9
91 1: 8 14: 21 28: 32
92 10: 17 13: 21 18: 20
93 1: 10 22: 29 28: 32
94 9: 17 18: 21 32: 40
95 18: 25 6: 9 22: 29
96 21: 30 18: 21 4: 8
97 21: 31 16: 21 12: 17
98 18: 25 1: 5 22: 29
99 12: 21 22: 26 4: 9
100 13: 21 22: 29 10: 12
101 1: 9 13: 17 21: 27
102 31: 40 22: 26 12: 17
103 1: 10 22: 29 18: 20
104 29: 40 22: 26 21: 29
105 18: 28 1: 4 34: 40
106 1: 10 22: 24 21: 27
107 11: 19 22: 29 28: 31
108 20: 30 22: 31 30: 34
109 11: 19 22: 25 32: 40
110 31: 40 22: 27 34: 40
111 1: 8 14: 17 33: 40
112 1: 10 22: 24 33: 40
113 29: 40 22: 32 18: 20
114 31: 40 11: 16 4: 8
115 22: 30 27: 31 4: 8
116 31: 40 22: 31 9: 11
117 31: 40 27: 31 12: 17
118 1: 12 26: 29 13: 17
119 11: 19 25: 29 21: 27
120 20: 28 22: 27 21: 29
121 1: 10 25: 29 21: 27
122 1: 8 18: 21 33: 40
123 11: 20 18: 21 13: 17
124 31: 40 22: 31 30: 33
125 1: 10 25: 29 33: 40
126 11: 19 26: 29 32: 40
127 20: 30 28: 31 35: 40
128 22: 31 37: 40 4: 8
129 21: 31 10: 21 9: 11
130 1: 10 35: 40 5: 9
131 1: 10 30: 34 5: 9
132 22: 30 22: 31 9: 11
133 31: 40 1: 5 12: 17
134 11: 19 22: 29 18: 20
135 20: 28 22: 32 18: 20
136 29: 40 27: 32 21: 29
137 20: 28 28: 32 21: 29
138 12: 19 30: 34 21: 27
139 10: 19 30: 40 28: 30
140 1: 10 18: 21 5: 9
141 10: 19 30: 33 31: 40
142 21: 30 5: 9 12: 17
143 31: 40 28: 31 34: 40
144 1: 10 18: 21 13: 17
145 11: 21 30: 40 1: 4
146 1: 9 18: 21 21: 27
147 22: 31 32: 36 4: 8
148 11: 21 30: 40 10: 12
149 31: 40 32: 36 12: 17
150 1: 10 30: 34 13: 17
151 1: 11 30: 40 18: 20
152 28: 40 33: 36 21: 29
153 1: 11 30: 34 21: 27
154 20: 27 33: 36 21: 29
155 1: 10 14: 17 5: 9
156 30: 40 32: 40 30: 34
157 20: 30 22: 27 35: 40
158 1: 9 30: 34 33: 40
159 20: 29 32: 35 34: 40
160 11: 19 22: 24 21: 27
161 1: 10 30: 40 1: 4
162 32: 40 32: 36 4: 8
163 11: 21 34: 40 5: 9
164 31: 40 32: 40 9: 11
165 11: 21 35: 40 13: 17
166 22: 30 36: 40 12: 17
167 20: 27 33: 40 18: 20
168 1: 11 35: 40 21: 27
169 12: 19 35: 40 21: 27
170 11: 17 1: 12 18: 20
171 32: 40 37: 40 4: 8
172 10: 19 34: 40 31: 40
173 1: 9 35: 40 33: 40
174 30: 40 36: 40 35: 40
175 30: 40 32: 35 35: 40
176 12: 21 27: 29 4: 9
177 21: 31 10: 15 12: 17
178 31: 40 22: 26 4: 8
179 22: 30 32: 40 9: 11
180 1: 10 30: 40 10: 12
181 1: 10 35: 40 13: 17
182 31: 40 37: 40 12: 17
183 28: 40 33: 40 18: 20
184 28: 40 37: 40 21: 29
185 20: 27 37: 40 21: 29
186 13: 21 26: 29 13: 17
187 1: 9 30: 40 28: 32
188 20: 29 32: 40 30: 33
189 28: 40 11: 15 35: 40
190 20: 29 36: 40 34: 40
191 31: 40 27: 31 4: 8
192 13: 21 22: 25 13: 17
New grid distribution: 3
1 31: 40 26: 30 14: 20
2 11: 20 6: 10 34: 40
3 11: 20 31: 35 4: 10
4 11: 20 21: 30 1: 3
5 1: 10 1: 5 34: 40
6 1: 10 1: 5 14: 20
7 11: 20 31: 40 1: 3
8 11: 20 1: 5 24: 30
9 1: 10 1: 5 24: 30
10 21: 30 1: 5 24: 30
11 21: 30 6: 10 14: 20
12 1: 10 31: 40 1: 3
13 1: 10 36: 40 14: 20
14 11: 20 1: 5 34: 40
15 31: 40 6: 10 14: 20
16 1: 10 1: 10 11: 13
17 1: 10 31: 35 14: 20
18 11: 20 11: 15 34: 40
19 31: 40 1: 5 14: 20
20 31: 40 1: 10 11: 13
21 11: 20 36: 40 14: 20
22 21: 30 1: 5 4: 10
23 11: 20 6: 10 14: 20
24 11: 20 11: 20 1: 3
25 11: 20 6: 10 24: 30
26 31: 40 1: 5 24: 30
27 31: 40 16: 20 14: 20
28 11: 20 1: 10 11: 13
29 11: 20 31: 35 14: 20
30 31: 40 6: 10 34: 40
31 1: 10 21: 30 21: 23
32 11: 20 1: 10 1: 3
33 31: 40 26: 30 4: 10
34 21: 30 6: 10 4: 10
35 21: 30 21: 30 21: 23
36 21: 30 1: 10 11: 13
37 1: 10 36: 40 34: 40
38 31: 40 1: 5 4: 10
39 31: 40 11: 15 14: 20
40 1: 10 1: 10 1: 3
41 1: 10 6: 10 24: 30
42 21: 30 6: 10 24: 30
43 31: 40 21: 30 31: 33
44 1: 10 11: 20 1: 3
45 11: 20 31: 40 31: 33
46 21: 30 6: 10 34: 40
47 1: 10 6: 10 34: 40
48 21: 30 11: 20 1: 3
49 21: 30 1: 5 34: 40
50 1: 10 11: 15 14: 20
51 11: 20 11: 15 4: 10
52 31: 40 11: 20 11: 13
53 21: 30 11: 15 14: 20
54 1: 10 16: 20 14: 20
55 31: 40 1: 10 1: 3
56 31: 40 11: 15 24: 30
57 1: 10 11: 15 24: 30
58 11: 20 11: 15 24: 30
59 21: 30 31: 40 31: 33
60 31: 40 11: 20 1: 3
61 31: 40 6: 10 24: 30
62 1: 10 11: 15 34: 40
63 11: 20 21: 30 31: 33
64 11: 20 11: 20 11: 13
65 21: 30 11: 15 24: 30
66 11: 20 11: 15 14: 20
67 11: 20 16: 20 4: 10
68 21: 30 11: 20 11: 13
69 21: 30 16: 20 14: 20
70 11: 20 16: 20 14: 20
71 1: 10 11: 20 11: 13
72 31: 40 16: 20 24: 30
73 1: 10 16: 20 24: 30
74 11: 20 16: 20 24: 30
75 31: 40 21: 30 21: 23
76 21: 30 1: 10 1: 3
77 31: 40 31: 40 21: 23
78 21: 30 16: 20 34: 40
79 1: 10 16: 20 34: 40
80 21: 30 1: 10 21: 23
81 1: 10 21: 30 1: 3
82 31: 40 21: 25 4: 10
83 31: 40 16: 20 4: 10
84 11: 20 21: 25 4: 10
85 31: 40 11: 15 4: 10
86 21: 30 21: 25 14: 20
87 1: 10 21: 25 14: 20
88 31: 40 1: 10 21: 23
89 21: 30 16: 20 24: 30
90 21: 30 1: 5 14: 20
91 21: 30 21: 25 24: 30
92 11: 20 11: 20 31: 33
93 1: 10 21: 30 31: 33
94 1: 10 21: 25 34: 40
95 11: 20 16: 20 34: 40
96 11: 20 1: 10 31: 33
97 21: 30 21: 25 34: 40
98 21: 30 21: 25 4: 10
99 1: 10 21: 25 4: 10
100 11: 20 21: 30 11: 13
101 31: 40 6: 10 4: 10
102 31: 40 21: 25 14: 20
103 11: 20 21: 25 14: 20
104 1: 10 1: 10 31: 33
105 11: 20 21: 25 24: 30
106 1: 10 21: 25 24: 30
107 31: 40 21: 25 24: 30
108 1: 10 11: 20 31: 33
109 21: 30 21: 30 31: 33
110 11: 20 21: 25 34: 40
111 31: 40 21: 25 34: 40
112 21: 30 11: 20 31: 33
113 21: 30 16: 20 4: 10
114 21: 30 26: 30 4: 10
115 1: 10 26: 30 4: 10
116 1: 10 21: 30 11: 13
117 21: 30 11: 15 4: 10
118 21: 30 26: 30 14: 20
119 11: 20 26: 30 14: 20
120 31: 40 1: 10 31: 33
121 11: 20 26: 30 24: 30
122 1: 10 26: 30 24: 30
123 31: 40 26: 30 24: 30
124 31: 40 11: 20 31: 33
125 31: 40 11: 20 21: 23
126 11: 20 26: 30 34: 40
127 21: 30 26: 30 34: 40
128 31: 40 26: 30 34: 40
129 11: 20 6: 10 4: 10
130 21: 30 31: 35 4: 10
131 11: 20 26: 30 4: 10
132 21: 30 11: 20 21: 23
133 1: 10 11: 15 4: 10
134 31: 40 31: 35 14: 20
135 1: 10 26: 30 14: 20
136 21: 30 1: 10 31: 33
137 21: 30 11: 15 34: 40
138 11: 20 1: 5 4: 10
139 21: 30 26: 30 24: 30
140 21: 30 21: 30 11: 13
141 1: 10 16: 20 4: 10
142 1: 10 26: 30 34: 40
143 11: 20 21: 30 21: 23
144 31: 40 31: 40 1: 3
145 1: 10 1: 5 4: 10
146 31: 40 31: 35 4: 10
147 1: 10 31: 35 4: 10
148 1: 10 31: 40 11: 13
149 31: 40 21: 30 11: 13
150 21: 30 31: 35 14: 20
151 1: 10 31: 40 21: 23
152 1: 10 31: 35 24: 30
153 31: 40 16: 20 34: 40
154 11: 20 31: 35 24: 30
155 31: 40 31: 35 24: 30
156 31: 40 21: 30 1: 3
157 21: 30 21: 30 1: 3
158 11: 20 31: 35 34: 40
159 31: 40 31: 35 34: 40
160 21: 30 31: 35 34: 40
161 1: 10 6: 10 4: 10
162 21: 30 36: 40 4: 10
163 11: 20 36: 40 4: 10
164 11: 20 31: 40 11: 13
165 11: 20 1: 5 14: 20
166 31: 40 36: 40 14: 20
167 21: 30 31: 40 1: 3
168 21: 30 31: 40 21: 23
169 31: 40 11: 15 34: 40
170 1: 10 36: 40 24: 30
171 21: 30 31: 35 24: 30
172 1: 10 11: 20 21: 23
173 31: 40 31: 40 31: 33
174 1: 10 31: 35 34: 40
175 31: 40 36: 40 34: 40
176 11: 20 1: 10 21: 23
177 1: 10 6: 10 14: 20
178 31: 40 36: 40 4: 10
179 1: 10 36: 40 4: 10
180 11: 20 11: 20 21: 23
181 31: 40 31: 40 11: 13
182 21: 30 36: 40 14: 20
183 11: 20 31: 40 21: 23
184 31: 40 36: 40 24: 30
185 31: 40 1: 5 34: 40
186 11: 20 36: 40 24: 30
187 21: 30 36: 40 24: 30
188 21: 30 31: 40 11: 13
189 1: 10 31: 40 31: 33
190 11: 20 36: 40 34: 40
191 21: 30 36: 40 34: 40
192 1: 10 1: 10 21: 23
Setting up quadratic distribution...
ExtMesh (bp) on 0 = 68 x 69 x 60 = 281520
PhiOnMesh: Number of (b)points on node 0 = 624
PhiOnMesh: nlist on node 0 = 10597
iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)
scf: 1 -14951.876199 -14952.411997 -14952.411997 0.062727 -2.574014 0.424087
scf: 2 -14952.295487 -14952.396008 -14952.396008 0.039124 -2.595185 0.774818
scf: 3 -14952.466238 -14952.443589 -14952.443589 0.021957 -2.581661 0.114256
scf: 4 -14952.446389 -14952.445316 -14952.445316 0.003710 -2.568604 0.027530
scf: 5 -14952.445414 -14952.445368 -14952.445368 0.000267 -2.566515 0.020586
scf: 6 -14952.445476 -14952.445438 -14952.445438 0.000715 -2.562266 0.012186
scf: 7 -14952.445450 -14952.445444 -14952.445444 0.000133 -2.561782 0.008393
scf: 8 -14952.445456 -14952.445452 -14952.445452 0.000350 -2.561258 0.003247
scf: 9 -14952.445453 -14952.445453 -14952.445453 0.000034 -2.561222 0.002671
scf: 10 -14952.445454 -14952.445454 -14952.445454 0.000075 -2.561104 0.001826
scf: 11 -14952.445454 -14952.445454 -14952.445454 0.000048 -2.560970 0.001493
scf: 12 -14952.445454 -14952.445454 -14952.445454 0.000022 -2.560811 0.001175
scf: 13 -14952.445455 -14952.445454 -14952.445454 0.000039 -2.560607 0.000714
SCF Convergence by DM+H criterion
max |DM_out - DM_in| : 0.0000389882
max |H_out - H_in| (eV) : 0.0007144569
SCF cycle converged after 13 iterations
Using DM_out to compute the final energy and forces
No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 11 47
siesta: E_KS(eV) = -14952.4455
siesta: Atomic forces (eV/Ang):
1 1.083244 0.970222 0.758910
2 -0.694930 0.041053 -0.322189
3 -0.148751 -1.399850 -1.191562
4 -1.318643 0.118236 0.220207
5 0.947711 0.457586 0.052081
6 0.548178 -0.381124 -0.516194
7 -1.408657 0.122102 -2.034891
8 1.696396 -0.573031 1.610707
9 0.512388 -0.154174 0.310025
10 0.928931 -0.150475 1.304454
11 0.170899 -1.202216 -0.048758
12 -0.545634 -0.030379 -0.890050
13 0.658663 -0.562282 -0.012792
14 -0.216433 0.486134 0.085848
15 -0.685987 0.217450 0.725452
16 -1.810627 -0.477771 1.413653
17 1.301845 -0.059925 -0.936804
18 -0.783094 0.490334 -0.287182
19 -0.581268 -1.162799 0.401896
20 -0.435861 0.358951 -0.029049
21 0.796791 0.360513 -0.186598
22 -0.302728 -0.153279 1.411571
23 0.133309 -0.059397 -1.194812
24 0.220277 0.824553 -0.487439
25 1.153259 -0.419225 -0.031854
26 -0.118122 -0.239049 0.287180
27 -0.583623 -0.101823 0.217344
28 0.710502 0.159588 1.671386
29 -0.431091 0.271096 -0.823625
30 0.425664 0.364825 0.062914
31 0.157113 -2.843001 1.661817
32 -0.603546 0.175017 -0.779063
33 -0.044324 3.318327 -2.034241
34 0.573508 -0.920058 -0.268223
35 0.150412 0.826397 0.367512
36 -0.448350 0.967901 0.174807
37 -1.271531 0.629240 1.520325
38 -0.712019 -0.379127 -1.695177
39 2.007488 -0.944733 -0.586314
40 0.181311 0.637897 0.545325
41 -0.123855 -0.138389 0.319405
42 -0.301024 -0.497536 -1.026493
43 1.084688 -1.694305 -0.307015
44 -0.245198 0.852187 -0.790170
45 -1.209403 1.417346 0.994098
46 -2.130717 0.811235 1.348973
47 1.871493 -0.641811 -1.571016
48 0.508163 -0.046002 -0.262698
49 -0.136093 2.246380 -0.961325
50 -0.380862 -0.594501 0.352012
51 -0.276065 -1.362642 2.131599
52 -1.064792 -1.751660 -2.160748
53 0.871088 0.163578 1.655199
54 0.074745 0.507220 0.015832
55 -1.025786 -0.818202 0.842202
56 0.920850 0.175010 0.144707
57 0.041764 0.184649 -1.007631
58 1.167013 0.627682 -1.294145
59 -0.253868 0.069125 0.373924
60 -1.034543 0.201312 -0.009279
61 -1.441285 -1.879721 -1.085363
62 0.102431 1.582511 0.611849
63 0.555764 1.285543 0.715555
64 -0.504667 0.187483 0.157328
65 -0.065674 -0.595401 0.235880
66 0.765934 -0.558917 0.156940
67 -0.679304 0.736545 1.089150
68 0.703201 0.198058 -0.415874
69 -0.144233 -0.366211 -1.536198
70 -0.089534 0.723696 0.599122
71 0.776366 0.262661 -2.085445
72 -0.331990 -0.554303 0.087962
73 2.142036 0.341437 0.865713
74 -0.248448 -0.643430 0.080087
75 -1.275152 0.979248 -0.887546
76 -0.886808 0.643080 -1.917183
77 0.521047 -1.078917 0.565017
78 0.217613 -0.055085 1.335835
79 0.314306 -0.920978 -0.336714
80 -0.077740 0.335172 -0.215524
81 -0.112501 0.172454 1.031169
82 -2.734251 1.474762 -1.588408
83 0.284917 -0.956973 1.761968
84 2.268560 -0.876325 0.143137
85 -1.640530 1.624734 0.139391
86 1.203386 -1.913728 -0.005520
87 -0.027643 -0.076483 -0.757123
88 0.022855 0.944859 -0.208191
89 -0.375280 -0.749192 0.874368
90 0.426633 -0.395658 0.207548
91 0.273558 0.168866 -0.690038
92 -0.112406 0.056441 0.014839
93 -0.384295 -0.201409 0.861599
94 -0.826971 0.472212 1.884233
95 0.697681 -0.269621 -0.762650
96 0.987633 0.565511 -0.265574
----------------------------------------
Tot -0.124519 -0.042700 -0.104631
----------------------------------------
Max 3.318327
Res 0.926988 sqrt( Sum f_i^2 / 3N )
----------------------------------------
Max 3.318327 constrained
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): -23.47 -6.71 -10.30 -7.88 2.86 3.24
(Free)E + p*V (eV/cell) -14944.3603
Target enthalpy (eV/cell) -14952.4455
mulliken: Atomic and Orbital Populations:
Species: O_lyp
Atom Qatom Qorb
2s 2py 2pz 2px
1 6.897 1.862 1.689 1.764 1.582
4 6.893 1.910 1.681 1.635 1.666
7 6.915 1.874 1.798 1.704 1.539
10 6.900 1.900 1.563 1.520 1.917
13 6.885 1.858 1.687 1.660 1.680
16 6.776 1.920 1.762 1.481 1.613
19 6.910 1.888 1.799 1.551 1.672
22 6.927 1.919 1.482 1.535 1.990
25 6.868 1.891 1.624 1.923 1.429
28 6.880 1.873 1.688 1.481 1.839
31 6.898 1.842 1.610 1.700 1.745
34 6.853 1.887 1.710 1.686 1.570
37 6.897 1.888 1.821 1.561 1.628
40 6.909 1.895 1.742 1.474 1.797
43 6.864 1.886 1.435 1.671 1.871
46 6.881 1.881 1.505 1.769 1.726
49 6.885 1.888 1.465 1.643 1.890
52 6.893 1.873 1.572 1.550 1.898
55 6.918 1.909 1.571 1.912 1.526
58 6.894 1.897 1.478 1.914 1.604
61 6.869 1.904 1.567 1.743 1.656
64 6.917 1.906 1.581 1.978 1.451
67 6.869 1.910 1.858 1.418 1.682
70 6.834 1.921 1.814 1.463 1.636
73 6.840 1.942 1.916 1.433 1.549
76 6.896 1.883 1.818 1.502 1.693
79 6.851 1.896 1.711 1.639 1.604
82 6.840 1.902 1.597 1.875 1.466
85 6.840 1.899 1.568 1.672 1.701
88 6.929 1.891 1.638 1.814 1.586
91 6.914 1.862 1.600 1.656 1.797
94 6.867 1.890 1.617 1.478 1.882
Species: H_lyp
Atom Qatom Qorb
1s
2 0.553 0.553
3 0.471 0.471
5 0.557 0.557
6 0.522 0.522
8 0.541 0.541
9 0.557 0.557
11 0.586 0.586
12 0.598 0.598
14 0.552 0.552
15 0.479 0.479
17 0.543 0.543
18 0.586 0.586
20 0.552 0.552
21 0.539 0.539
23 0.583 0.583
24 0.581 0.581
26 0.515 0.515
27 0.589 0.589
29 0.569 0.569
30 0.516 0.516
32 0.538 0.538
33 0.604 0.604
35 0.550 0.550
36 0.553 0.553
38 0.509 0.509
39 0.536 0.536
41 0.539 0.539
42 0.577 0.577
44 0.576 0.576
45 0.585 0.585
47 0.537 0.537
48 0.548 0.548
50 0.539 0.539
51 0.546 0.546
53 0.535 0.535
54 0.518 0.518
56 0.566 0.566
57 0.542 0.542
59 0.620 0.620
60 0.570 0.570
62 0.598 0.598
63 0.483 0.483
65 0.609 0.609
66 0.570 0.570
68 0.572 0.572
69 0.574 0.574
71 0.596 0.596
72 0.594 0.594
74 0.672 0.672
75 0.581 0.581
77 0.516 0.516
78 0.515 0.515
80 0.636 0.636
81 0.552 0.552
83 0.593 0.593
84 0.559 0.559
86 0.569 0.569
87 0.574 0.574
89 0.554 0.554
90 0.568 0.568
92 0.539 0.539
93 0.568 0.568
95 0.576 0.576
96 0.549 0.549
mulliken: Qtot = 256.000
cgvc: Finished line minimization 2. Mean atomic displacement = 0.0737
outcoor: Final (unrelaxed) atomic coordinates (Ang):
0.20575730 3.66387011 6.46398304 1 1 O_lyp
-0.69453581 4.12604672 6.81837369 2 2 H_lyp
-0.04877946 2.90003883 5.77096044 2 3 H_lyp
1.43223203 6.99664840 7.00180518 1 4 O_lyp
2.11606050 7.83254001 6.95707069 2 5 H_lyp
0.92499680 7.31713736 7.99132793 2 6 H_lyp
6.95940251 0.22829568 6.67191899 1 7 O_lyp
7.65723675 0.03681714 7.44557538 2 8 H_lyp
6.12194103 0.83184792 7.07447005 2 9 H_lyp
6.05034036 9.47665522 1.15696603 1 10 O_lyp
6.16056434 10.42203169 0.57336129 2 11 H_lyp
6.57414218 9.79075310 2.29147118 2 12 H_lyp
5.98535452 7.26430609 2.76619168 1 13 O_lyp
6.22171206 8.03609078 2.00260574 2 14 H_lyp
5.11721374 7.63903508 3.32593624 2 15 H_lyp
0.19556497 3.99039961 2.48197020 1 16 O_lyp
-0.59995853 4.40169418 3.31376244 2 17 H_lyp
-0.45763520 3.65157497 1.66009189 2 18 H_lyp
0.59787714 7.06636809 4.25321326 1 19 O_lyp
0.81804117 7.00076715 5.37786123 2 20 H_lyp
-0.39503734 6.42119874 4.06318933 2 21 H_lyp
5.49655724 1.90663412 8.70709308 1 22 O_lyp
5.42119192 2.00173389 9.90779860 2 23 H_lyp
5.53284937 2.98653588 8.56258369 2 24 H_lyp
3.88808812 7.01585201 4.90091584 1 25 O_lyp
4.29900303 5.96365778 4.77845413 2 26 H_lyp
2.85444768 6.87552567 5.14888623 2 27 H_lyp
9.20762203 5.11215628 9.03094081 1 28 O_lyp
8.93007858 5.01018974 8.01284279 2 29 H_lyp
9.79509891 4.18272945 9.37469959 2 30 H_lyp
5.24437674 0.71259116 5.00820805 1 31 O_lyp
4.41664770 0.59380999 5.74812849 2 32 H_lyp
5.37554430 1.54358438 4.47496685 2 33 H_lyp
5.60501600 2.25561190 1.56849255 1 34 O_lyp
6.04512840 1.38655580 2.15631483 2 35 H_lyp
4.68511086 2.52044842 2.05310576 2 36 H_lyp
7.13664567 0.71925318 3.48110666 1 37 O_lyp
6.86830917 0.61777268 4.71070912 2 38 H_lyp
8.00741709 0.10487937 3.46846430 2 39 H_lyp
5.62943110 5.29042893 8.61558010 1 40 O_lyp
5.77049885 6.12087523 7.77770244 2 41 H_lyp
6.14995432 5.68496425 9.59410066 2 42 H_lyp
2.30967996 5.34189658 2.68991482 1 43 O_lyp
2.33129584 4.37456211 3.30260503 2 44 H_lyp
1.87696709 6.02451410 3.36004676 2 45 H_lyp
7.29202990 6.30838772 0.70892132 1 46 O_lyp
7.98859242 6.01947546 -0.01157146 2 47 H_lyp
7.04104711 7.39025883 0.66053007 2 48 H_lyp
3.03018083 0.59950142 6.19069291 1 49 O_lyp
2.88490923 1.69458849 6.58218178 2 50 H_lyp
3.01265466 -0.04954524 7.00317912 2 51 H_lyp
0.28136892 7.71418883 9.65276548 1 52 O_lyp
0.57173924 7.86033593 10.64730165 2 53 H_lyp
0.04366076 6.57603937 9.55634056 2 54 H_lyp
3.15532290 8.17887283 9.51748119 1 55 O_lyp
4.18776382 8.48901288 9.54037232 2 56 H_lyp
3.11128242 7.11447170 9.97399981 2 57 H_lyp
3.16592837 5.22250359 0.01540864 1 58 O_lyp
2.79275173 4.20619931 0.04358224 2 59 H_lyp
4.27402409 5.14382127 -0.50278258 2 60 H_lyp
8.19561780 5.74779251 3.40841107 1 61 O_lyp
7.96041010 4.90279282 2.63559050 2 62 H_lyp
7.07881763 6.22646698 3.14794446 2 63 H_lyp
4.85060931 4.87723724 2.08943915 1 64 O_lyp
5.39991853 5.82975528 1.97225848 2 65 H_lyp
3.76904779 5.26817163 1.99105553 2 66 H_lyp
3.15317373 8.69212862 3.02127669 1 67 O_lyp
2.28157628 8.20514769 3.54324246 2 68 H_lyp
3.11726499 8.40325029 1.99293557 2 69 H_lyp
0.88833821 2.81639857 0.16324662 1 70 O_lyp
0.88419687 2.69396257 1.33314752 2 71 H_lyp
-0.05897495 2.26510958 -0.05238759 2 72 H_lyp
8.82333784 1.05735967 1.07740494 1 73 O_lyp
9.62622908 0.80973955 0.34063123 2 74 H_lyp
9.58499270 0.87852990 2.14739317 2 75 H_lyp
2.72062752 3.19637775 7.18513338 1 76 O_lyp
1.70729338 3.78052737 6.86866659 2 77 H_lyp
2.58152278 3.11007593 8.24274042 2 78 H_lyp
9.11014019 8.93669995 2.95186573 1 79 O_lyp
9.92726787 9.13783442 2.26823309 2 80 H_lyp
9.63611973 8.08947898 3.49248665 2 81 H_lyp
0.70554449 1.43440757 3.17625901 1 82 O_lyp
0.54178969 2.62718493 2.83860568 2 83 H_lyp
1.72279803 1.25797622 3.01354331 2 84 H_lyp
2.24251569 3.14937773 4.41288358 1 85 O_lyp
3.00852044 2.43816185 4.37814032 2 86 H_lyp
2.55496158 3.78791515 5.27316946 2 87 H_lyp
5.95788022 7.35895681 6.60952031 1 88 O_lyp
6.46509705 8.39100375 6.36260335 2 89 H_lyp
5.00920374 7.45173980 5.98219870 2 90 H_lyp
8.62610855 9.61970080 8.59856958 1 91 O_lyp
9.18509002 8.77460186 9.07546439 2 92 H_lyp
8.18228020 10.27535649 9.33706329 2 93 H_lyp
4.42725782 4.33504499 5.23267134 1 94 O_lyp
4.65343065 3.56688930 4.52309785 2 95 H_lyp
3.96734871 3.85729579 6.20771383 2 96 H_lyp
coxmol: Writing XMOL coordinates into file 32_h2o.xyz
siesta: Eigenvalues (eV):
ik is eps
1 1 -28.4433 -27.7770 -27.6366 -27.4761 -26.9788 -26.9367 -26.8433 -26.3354 -26.2879 -26.1558
-26.0939 -26.0154 -25.7929 -25.6747 -25.4616 -25.2445 -25.2102 -25.1200 -24.9573 -24.9167
-24.8420 -24.5316 -24.4432 -24.3237 -24.0964 -23.9393 -23.7385 -23.6097 -23.5698 -23.0405
-22.7057 -22.0524 -16.3584 -15.4591 -15.3604 -15.2624 -14.9954 -14.5023 -14.4628 -14.4206
-14.1596 -14.0381 -13.9150 -13.8735 -13.8100 -13.7630 -13.5478 -13.3939 -13.3005 -13.1209
-12.9894 -12.9571 -12.8363 -12.6515 -12.6191 -12.5196 -12.4041 -12.3092 -12.2476 -12.2305
-12.1255 -11.9399 -11.7851 -11.7529 -11.7059 -11.5445 -11.4522 -11.2975 -11.2361 -11.1846
-11.0711 -11.0332 -10.9227 -10.8414 -10.7177 -10.6631 -10.6198 -10.4234 -10.4065 -10.3172
-10.2947 -10.2018 -10.0960 -9.9425 -9.8345 -9.7907 -9.6997 -9.6852 -9.5933 -9.5254
-9.4006 -9.3615 -9.2276 -9.1467 -8.9863 -8.9375 -8.8701 -8.7782 -8.7075 -8.6958
-8.6528 -8.4951 -8.4556 -8.3988 -8.3127 -8.2332 -8.1552 -7.9332 -7.8853 -7.8527
-7.8158 -7.7653 -7.6296 -7.5820 -7.4487 -7.3555 -7.1432 -7.0021 -6.9964 -6.8993
-6.8357 -6.7739 -6.7345 -6.7203 -6.5875 -5.9680 -5.9278 -4.8277 -2.2098 -1.7534
-0.4311 -0.2717 -0.0488 0.4426 0.5553 0.7221 0.8756 1.0079 1.1447 1.3376
1.4665 1.5557 1.8043 1.8253 2.0320 2.1193 2.2579 2.3804 2.4455 2.5730
2.7595 2.9344 2.9513 3.0292 3.1536 3.3362 3.3858 3.4605 3.5148 3.6430
3.7232 3.8170 3.9598 4.0738 4.2264 4.3328 4.3834 4.4364 4.5698 4.7110
4.7664 4.8966 4.9297 4.9774 5.0564 5.1165 5.1243 5.3130 5.4116 5.5666
5.6514 5.8626 5.9344 6.2060 6.3081 6.4726 6.7994 6.9490 7.4741 7.8597
8.2810 9.1899
siesta: Fermi energy = -2.560607 eV
siesta: Program's energy decomposition (eV):
siesta: Ebs = -3623.924126
siesta: Eions = 26107.343322
siesta: Ena = 6275.592473
siesta: Ekin = 10634.500924
siesta: Enl = -1664.480018
siesta: Eso = 0.000000
siesta: Edftu = 0.000000
siesta: DEna = -571.029225
siesta: DUscf = 104.132963
siesta: DUext = 0.000000
siesta: Exc = -3623.819249
siesta: eta*DQ = 0.000000
siesta: Emadel = 0.000000
siesta: Emeta = 0.000000
siesta: Emolmec = 0.000000
siesta: Ekinion = 0.000000
siesta: Eharris = -14952.445455
siesta: Etot = -14952.445454
siesta: FreeEng = -14952.445454
siesta: Final energy (eV):
siesta: Band Struct. = -3623.924126
siesta: Kinetic = 10634.500924
siesta: Hartree = 7290.843854
siesta: Edftu = 0.000000
siesta: Eso = 0.000000
siesta: Ext. field = 0.000000
siesta: Exch.-corr. = -3623.819249
siesta: Ion-electron = -24238.182338
siesta: Ion-ion = -5015.788645
siesta: Ekinion = 0.000000
siesta: Total = -14952.445454
siesta: Fermi = -2.560607
siesta: Atomic forces (eV/Ang):
siesta: 1 1.083244 0.970222 0.758910
siesta: 2 -0.694930 0.041053 -0.322189
siesta: 3 -0.148751 -1.399850 -1.191562
siesta: 4 -1.318643 0.118236 0.220207
siesta: 5 0.947711 0.457586 0.052081
siesta: 6 0.548178 -0.381124 -0.516194
siesta: 7 -1.408657 0.122102 -2.034891
siesta: 8 1.696396 -0.573031 1.610707
siesta: 9 0.512388 -0.154174 0.310025
siesta: 10 0.928931 -0.150475 1.304454
siesta: 11 0.170899 -1.202216 -0.048758
siesta: 12 -0.545634 -0.030379 -0.890050
siesta: 13 0.658663 -0.562282 -0.012792
siesta: 14 -0.216433 0.486134 0.085848
siesta: 15 -0.685987 0.217450 0.725452
siesta: 16 -1.810627 -0.477771 1.413653
siesta: 17 1.301845 -0.059925 -0.936804
siesta: 18 -0.783094 0.490334 -0.287182
siesta: 19 -0.581268 -1.162799 0.401896
siesta: 20 -0.435861 0.358951 -0.029049
siesta: 21 0.796791 0.360513 -0.186598
siesta: 22 -0.302728 -0.153279 1.411571
siesta: 23 0.133309 -0.059397 -1.194812
siesta: 24 0.220277 0.824553 -0.487439
siesta: 25 1.153259 -0.419225 -0.031854
siesta: 26 -0.118122 -0.239049 0.287180
siesta: 27 -0.583623 -0.101823 0.217344
siesta: 28 0.710502 0.159588 1.671386
siesta: 29 -0.431091 0.271096 -0.823625
siesta: 30 0.425664 0.364825 0.062914
siesta: 31 0.157113 -2.843001 1.661817
siesta: 32 -0.603546 0.175017 -0.779063
siesta: 33 -0.044324 3.318327 -2.034241
siesta: 34 0.573508 -0.920058 -0.268223
siesta: 35 0.150412 0.826397 0.367512
siesta: 36 -0.448350 0.967901 0.174807
siesta: 37 -1.271531 0.629240 1.520325
siesta: 38 -0.712019 -0.379127 -1.695177
siesta: 39 2.007488 -0.944733 -0.586314
siesta: 40 0.181311 0.637897 0.545325
siesta: 41 -0.123855 -0.138389 0.319405
siesta: 42 -0.301024 -0.497536 -1.026493
siesta: 43 1.084688 -1.694305 -0.307015
siesta: 44 -0.245198 0.852187 -0.790170
siesta: 45 -1.209403 1.417346 0.994098
siesta: 46 -2.130717 0.811235 1.348973
siesta: 47 1.871493 -0.641811 -1.571016
siesta: 48 0.508163 -0.046002 -0.262698
siesta: 49 -0.136093 2.246380 -0.961325
siesta: 50 -0.380862 -0.594501 0.352012
siesta: 51 -0.276065 -1.362642 2.131599
siesta: 52 -1.064792 -1.751660 -2.160748
siesta: 53 0.871088 0.163578 1.655199
siesta: 54 0.074745 0.507220 0.015832
siesta: 55 -1.025786 -0.818202 0.842202
siesta: 56 0.920850 0.175010 0.144707
siesta: 57 0.041764 0.184649 -1.007631
siesta: 58 1.167013 0.627682 -1.294145
siesta: 59 -0.253868 0.069125 0.373924
siesta: 60 -1.034543 0.201312 -0.009279
siesta: 61 -1.441285 -1.879721 -1.085363
siesta: 62 0.102431 1.582511 0.611849
siesta: 63 0.555764 1.285543 0.715555
siesta: 64 -0.504667 0.187483 0.157328
siesta: 65 -0.065674 -0.595401 0.235880
siesta: 66 0.765934 -0.558917 0.156940
siesta: 67 -0.679304 0.736545 1.089150
siesta: 68 0.703201 0.198058 -0.415874
siesta: 69 -0.144233 -0.366211 -1.536198
siesta: 70 -0.089534 0.723696 0.599122
siesta: 71 0.776366 0.262661 -2.085445
siesta: 72 -0.331990 -0.554303 0.087962
siesta: 73 2.142036 0.341437 0.865713
siesta: 74 -0.248448 -0.643430 0.080087
siesta: 75 -1.275152 0.979248 -0.887546
siesta: 76 -0.886808 0.643080 -1.917183
siesta: 77 0.521047 -1.078917 0.565017
siesta: 78 0.217613 -0.055085 1.335835
siesta: 79 0.314306 -0.920978 -0.336714
siesta: 80 -0.077740 0.335172 -0.215524
siesta: 81 -0.112501 0.172454 1.031169
siesta: 82 -2.734251 1.474762 -1.588408
siesta: 83 0.284917 -0.956973 1.761968
siesta: 84 2.268560 -0.876325 0.143137
siesta: 85 -1.640530 1.624734 0.139391
siesta: 86 1.203386 -1.913728 -0.005520
siesta: 87 -0.027643 -0.076483 -0.757123
siesta: 88 0.022855 0.944859 -0.208191
siesta: 89 -0.375280 -0.749192 0.874368
siesta: 90 0.426633 -0.395658 0.207548
siesta: 91 0.273558 0.168866 -0.690038
siesta: 92 -0.112406 0.056441 0.014839
siesta: 93 -0.384295 -0.201409 0.861599
siesta: 94 -0.826971 0.472212 1.884233
siesta: 95 0.697681 -0.269621 -0.762650
siesta: 96 0.987633 0.565511 -0.265574
siesta: ----------------------------------------
siesta: Tot -0.124519 -0.042700 -0.104631
siesta: Stress tensor (static) (eV/Ang**3):
siesta: -0.014646 0.002022 0.001782
siesta: 0.002022 -0.004190 -0.004916
siesta: 0.001782 -0.004917 -0.006429
siesta: Cell volume = 960.044290 Ang**3
siesta: Pressure (static):
siesta: Solid Molecule Units
siesta: 0.00009172 0.00003060 Ry/Bohr**3
siesta: 0.00842161 0.00281003 eV/Ang**3
siesta: 13.49305377 4.50221798 kBar
(Free)E+ p_basis*V_orbitals = -14940.398590
(Free)Eharris+ p_basis*V_orbitals = -14940.398590
cite: Please see "32_h2o.bib" for an exhaustive BiBTeX file.
cite: Please clearly indicate Siesta version in published work: 4.1.5
cite: This calculation has made use of the following articles
cite: which are encouraged to be cited in a published work.
Primary SIESTA paper
DOI: www.doi.org/10.1088/0953-8984/14/11/302
>> End of run: 13-APR-2022 11:55:57
Job completed
Job completed
Test completed, rc=0, 28.396 s