Benchmark / test report

Container name: Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif

test script

#!/bin/bash
#SBATCH -N2
#SBATCH --ntasks-per-node=2
#SBATCH -J plcr-abinit-cpu-test

PLCR=${PLCR:-/net/ascratch/groups/plggsoftware/containers}
CONT=${1:-Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif}

echo "PLCR test: $SLURM_JOB_NAME"
echo "PLCR jobid: $SLURM_JOBID"
echo "PLCR path: $PLCR"

echo "Test performed on: "`date`
echo "Testing container: $CONT"
SHA=`dd bs=1M if=$PLCR/images/$CONT 2>/dev/null | sha256sum | cut -d' ' -f1`
echo "Container checksum: $SHA"

export I_MPI_PMI_LIBRARY=$PLCR/local/pmi2/libpmi2.so

cd $TMPDIR

wget --quiet https://www.abinit.org/sites/default/files/packages/abinit-9.6.2.tar.gz
tar xf abinit-9.6.2.tar.gz
export ABI_PSPDIR=/host_pwd/abinit-9.6.2/tests/Psps_for_tests

srun --mpi=pmi2 --cpu-bind=cores singularity -s run -B $I_MPI_PMI_LIBRARY -B $PWD:/host_pwd --pwd /host_pwd $PLCR/images/$CONT abinit abinit-9.6.2/tests/v67mbpt/Input/t01.abi

RC=$?

grep 'overall_wall_time:' $SLURM_SUBMIT_DIR/slurm-${SLURM_JOB_ID}.out > result

echo  "Test completed, rc=$RC, " $(cat result)

test results

PLCR test: plcr-abinit-cpu-test
PLCR jobid: 206776
PLCR path: /net/ascratch/groups/plggsoftware/containers
Test performed on: Tue Feb 8 12:41:27 CET 2022
Testing container: Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif
Container checksum: 63726c211760a7dc41cee7e5d30ac48f8f1c61c9c78337b56e194b35b4e3ebf1
  ABINIT 9.6.2

ABI_PSPDIR  found in environment, with value /host_pwd/abinit-9.6.2/tests/Psps_for_tests
-instrng: 112 lines of input have been read from file abinit-9.6.2/tests/v67mbpt/Input/t01.abi


.Version 9.6.2 of ABINIT 
.(MPI version, prepared for a x86_64_linux_intel2021.4 computer) 

.Copyright (C) 1998-2021 ABINIT group . 
 ABINIT comes with ABSOLUTELY NO WARRANTY.
 It is free software, and you are welcome to redistribute it
 under certain conditions (GNU General Public License,
 see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).

 ABINIT is a project of the Universite Catholique de Louvain,
 Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
 Please read https://docs.abinit.org/theory/acknowledgments for suggested
 acknowledgments of the ABINIT effort.
 For more information, see https://www.abinit.org .

.Starting date : Tue  8 Feb 2022.
- ( at 12h41 )


 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 === Build Information === 
  Version       : 9.6.2
  Build target  : x86_64_linux_intel2021.4
  Build date    : 20220207

 === Compiler Suite === 
  C compiler       : intel2021.4
  C++ compiler     : gnu2021.4
  Fortran compiler : intel2021.4
  CFLAGS           : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPIC -mt_mpi
  CXXFLAGS         : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPIC -mt_mpi
  FCFLAGS          : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPI ...
  FC_LDFLAGS       :   -static-intel -static-libgcc

 === Optimizations === 
  Debug level        : basic
  Optimization level : standard
  Architecture       : unknown_unknown

 === Multicore === 
  Parallel build : yes
  Parallel I/O   : 
  openMP support : yes
  GPU support    : 

 === Connectors / Fallbacks === 
  LINALG flavor  : mkl
  FFT flavor     : dfti
  HDF5           : yes
  NetCDF         : yes
  NetCDF Fortran : yes
  LibXC          : yes
  Wannier90      : yes

 === Experimental features === 
  Exports             : 
  GW double-precision : yes

 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 Default optimizations:
   --- None ---


 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 CPP options activated during the build:

                  CC_INTEL                   CXX_GNU                  FC_INTEL

                 HAVE_DFTI HAVE_FC_ALLOCATABLE_DT...             HAVE_FC_ASYNC

  HAVE_FC_COMMAND_ARGUMENT      HAVE_FC_COMMAND_LINE        HAVE_FC_CONTIGUOUS

           HAVE_FC_CPUTIME             HAVE_FC_ETIME              HAVE_FC_EXIT

             HAVE_FC_FLUSH             HAVE_FC_GAMMA            HAVE_FC_GETENV

            HAVE_FC_GETPID   HAVE_FC_IEEE_ARITHMETIC   HAVE_FC_IEEE_EXCEPTIONS

             HAVE_FC_IOMSG     HAVE_FC_ISO_C_BINDING  HAVE_FC_ISO_FORTRAN_2008

        HAVE_FC_LONG_LINES        HAVE_FC_MOVE_ALLOC  HAVE_FC_ON_THE_FLY_SHAPE

           HAVE_FC_PRIVATE         HAVE_FC_PROTECTED           HAVE_FC_SHIFTLR

         HAVE_FC_STREAM_IO            HAVE_FC_SYSTEM               HAVE_GW_DPC

                 HAVE_HDF5             HAVE_HDF5_MPI        HAVE_LIBPAW_ABINIT

      HAVE_LIBTETRA_ABINIT                HAVE_LIBXC         HAVE_LINALG_AXPBY

        HAVE_LINALG_GEMM3M         HAVE_LINALG_GEMMT  HAVE_LINALG_MKL_IMATCOPY

   HAVE_LINALG_MKL_OMATADD  HAVE_LINALG_MKL_OMATCOPY   HAVE_LINALG_MKL_THREADS

     HAVE_LINALG_SCALAPACK                  HAVE_MPI                 HAVE_MPI2

       HAVE_MPI_IALLGATHER       HAVE_MPI_IALLREDUCE        HAVE_MPI_IALLTOALL

       HAVE_MPI_IALLTOALLV           HAVE_MPI_IBCAST         HAVE_MPI_IGATHERV

        HAVE_MPI_INTEGER16               HAVE_MPI_IO HAVE_MPI_TYPE_CREATE_S...

               HAVE_NETCDF       HAVE_NETCDF_FORTRAN   HAVE_NETCDF_FORTRAN_MPI

           HAVE_NETCDF_MPI         HAVE_OMP_COLLAPSE               HAVE_OPENMP

             HAVE_OS_LINUX         HAVE_TIMER_ABINIT            HAVE_WANNIER90

 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

- input  file    -> abinit-9.6.2/tests/v67mbpt/Input/t01.abi
- output file    -> abinit-9.6.2/tests/v67mbpt/Input/t01.abo
- root for input  files -> t01i
- root for output files -> t01o

 Netcdf library supports MPI-IO
ABI_PSPDIR  found in environment, with value /host_pwd/abinit-9.6.2/tests/Psps_for_tests
-instrng: 112 lines of input have been read from file abinit-9.6.2/tests/v67mbpt/Input/t01.abi

 For atom type 1, psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
 For atom type 2, psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
  read the values zionpsp=  4.0 , pspcod=   1 , lmax=   1
  read the values zionpsp=  4.0 , pspcod=   1 , lmax=   2

 inpspheads: deduce mpsang = 3, n1xccc = 2501.

======================================================= 
 invars1m : enter jdtset= 1

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

--- !COMMENT
src_file: m_ingeo.F90
src_line: 900
message: |
    The tolerance on symmetries =   1.000E-05 is bigger than 1.0e-8.
    In order to avoid spurious effects, the atomic coordinates have been
    symmetrized before storing them in the dataset internal variable.
    So, do not be surprised by the fact that your input variables (xcart, xred, ...)
    do not correspond exactly to the ones echoed by ABINIT, the latter being used to do the calculations.
    This is not a problem per se.
    Still, in order to avoid this symmetrization (e.g. for specific debugging/development), decrease tolsym to 1.0e-8 or lower,
    or (much preferred) use input primitive vectors that are accurate to better than 1.0e-8.
    This message will only be printed once, even if there are other datasets where tolsym is bigger than 1.0e-8.
...


 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

======================================================= 
 invars1m : enter jdtset= 2

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

======================================================= 
 invars1m : enter jdtset= 3

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

======================================================= 
 invars1m : enter jdtset= 4

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

======================================================= 
 invars1m : enter jdtset= 5

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

======================================================= 
 invars1m : enter jdtset= 6

 symlatt: the Bravais lattice is cF (face-centered cubic)
  xred   is defined in input file
 ingeo: takes atomic coordinates from input array xred

 symlatt: the Bravais lattice is cF (face-centered cubic)

 symlatt: the Bravais lattice is cF (face-centered cubic)
 symspgr: spgroup= 216  F-4 3 m   (=Td^2)
 symspgr: optical characteristics = isotropic

--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
    One of the three variables ecutsigx, npwsigx, or nshsigx
    must be non-null. Returning.
...


--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
    One of the three variables ecuteps, npweps, or nsheps
    must be non-null. Returning.
...


--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
    One of the three variables ecuteps, npweps, or nsheps
    must be non-null. Returning.
...


--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
    One of the three variables ecuteps, npweps, or nsheps
    must be non-null. Returning.
...


--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
    One of the three variables ecuteps, npweps, or nsheps
    must be non-null. Returning.
...


--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...


--- !WARNING
src_file: m_mpi_setup.F90
src_line: 732
message: |
    Your number of spins*k-points (=2) will not distribute correctly
    with the current number of processors (=4).
    You will leave some empty.
    YOU ARE STRONGLY ADVISED TO ACTIVATE AUTOMATIC PARALLELIZATION!
    PUT "AUTOPARAL=1" IN THE INPUT FILE.
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
    nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
    The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...

 For input ecut=  6.000000E+00 best grid ngfft=      15      15      15
       max ecut=  7.887793E+00

 ==== FFT mesh ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 getmpw: optimal value of mpw= 89

 DATASET    1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  1.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          15        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.868 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.043 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.
 memana : allocated an array of      0.414 Mbytes, for testing purposes.
 memana: allocated       1.868Mbytes, for testing purposes. 
 The job will continue.

 DATASET    2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  2.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          10        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.856 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.029 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.

 DATASET    3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  3.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          10        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.856 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.029 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.

 DATASET    4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  4.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          10        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.856 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.029 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.

 DATASET    5 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  5.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          10        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.856 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.029 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.

 DATASET    6 : space group F-4 3 m (#216); Bravais cF (face-center cubic)

 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
memory: analysis of memory needs
================================================================================
 Values of the parameters that define the memory need for DATASET  6.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       2
     lnmax =       2     mgfft =      15  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      24    n1xccc =    2501    ntypat =       2
    occopt =       1   xclevel =       1
-    mband =          10        mffmem =           1         mkmem =           1
       mpw =          89          nfft =        3375          nkpt =           2
================================================================================
P This job should need less than                       1.856 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.029 Mbytes ; DEN or POT disk file :      0.028 Mbytes.
================================================================================

 Biggest array : f_fftgr(disk), with      0.4140 MBytes.
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values                                      
-   iomode0 =  0 , fftalg0 =512 , wfoptalg0 =  0
-
- outvars: echo of global parameters not present in the input file              
-  max_nthreads =    1
-
 -outvars: echo values of preprocessed input variables --------

 These variables are accessible in NetCDF format (t01o_OUT.nc)

            acell      7.8700000000E+00  7.8700000000E+00  7.8700000000E+00 Bohr
              amu      1.20110000E+01  2.80855000E+01
             bdgw3          4       5
             bdgw4          4       5
             bdgw5          4       5
             bdgw6          4       5
             ecut      6.00000000E+00 Hartree
          ecuteps1     0.00000000E+00 Hartree
          ecuteps2     2.54958951E+00 Hartree
          ecuteps3     0.00000000E+00 Hartree
          ecuteps4     0.00000000E+00 Hartree
          ecuteps5     0.00000000E+00 Hartree
          ecuteps6     0.00000000E+00 Hartree
         ecutsigx1     0.00000000E+00 Hartree
         ecutsigx2     0.00000000E+00 Hartree
         ecutsigx3     2.54958951E+00 Hartree
         ecutsigx4     2.54958951E+00 Hartree
         ecutsigx5     2.54958951E+00 Hartree
         ecutsigx6     2.54958951E+00 Hartree
          ecutwfn      6.00000000E+00 Hartree
           enunit           2
-          fftalg         512
           getscr1          0
           getscr2          0
           getscr3         -1
           getscr4         -2
           getscr5         -3
           getscr6         -4
           getwfk1          0
           getwfk2         -1
           getwfk3         -2
           getwfk4         -3
           getwfk5         -4
           getwfk6         -5
      gw_icutcoul1          6
      gw_icutcoul2          6
      gw_icutcoul3          3
      gw_icutcoul4          3
      gw_icutcoul5          3
      gw_icutcoul6          3
           jdtset        1    2    3    4    5    6
              kpt     -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
            kptgw3     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw4     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw5     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw6     2.50000000E-01  7.50000000E-01  2.50000000E-01
         kptrlatt        2   -2    2     -2    2    2     -2   -2    2
          kptrlen      1.57400000E+01
P           mkmem           1
            natom           2
            nband1         15
            nband2         10
            nband3         10
            nband4         10
            nband5         10
            nband6         10
           nbdbuf1          5
           nbdbuf2          0
           nbdbuf3          0
           nbdbuf4          0
           nbdbuf5          0
           nbdbuf6          0
           ndtset           6
            ngfft          15      15      15
             nkpt           2
           nkptgw1          0
           nkptgw2          0
           nkptgw3          1
           nkptgw4          1
           nkptgw5          1
           nkptgw6          1
            nline1          3
            nline2          4
            nline3          4
            nline4          4
            nline5          4
            nline6          4
        nomegasrd           5
           npweps1          0
           npweps2         27
           npweps3          0
           npweps4          0
           npweps5          0
           npweps6          0
          npwsigx1          0
          npwsigx2          0
          npwsigx3         27
          npwsigx4         27
          npwsigx5         27
          npwsigx6         27
           npwwfn1          0
           npwwfn2         65
           npwwfn3         65
           npwwfn4         65
           npwwfn5         65
           npwwfn6         65
            nstep1         20
            nstep2         30
            nstep3         30
            nstep4         30
            nstep5         30
            nstep6         30
             nsym          24
           ntypat           2
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ3     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ4     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ5     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ6     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
      omegasrdmax      1.83746627E-02 Hartree
        optdriver1          0
        optdriver2          3
        optdriver3          4
        optdriver4          4
        optdriver5          4
        optdriver6          4
           ppmfrq1     0.00000000E+00 Hartree
           ppmfrq2     5.00003971E-01 Hartree
           ppmfrq3     0.00000000E+00 Hartree
           ppmfrq4     0.00000000E+00 Hartree
           ppmfrq5     0.00000000E+00 Hartree
           ppmfrq6     0.00000000E+00 Hartree
          ppmodel1          1
          ppmodel2          1
          ppmodel3          1
          ppmodel4          2
          ppmodel5          3
          ppmodel6          4
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         216
           symrel      1  0  0   0  1  0   0  0  1       0 -1  1   0 -1  0   1 -1  0
                      -1  0  0  -1  0  1  -1  1  0       0  1 -1   1  0 -1   0  0 -1
                      -1  0  0  -1  1  0  -1  0  1       0 -1  1   1 -1  0   0 -1  0
                       1  0  0   0  0  1   0  1  0       0  1 -1   0  0 -1   1  0 -1
                      -1  0  1  -1  1  0  -1  0  0       0 -1  0   1 -1  0   0 -1  1
                       1  0 -1   0  0 -1   0  1 -1       0  1  0   0  0  1   1  0  0
                       1  0 -1   0  1 -1   0  0 -1       0 -1  0   0 -1  1   1 -1  0
                      -1  0  1  -1  0  0  -1  1  0       0  1  0   1  0  0   0  0  1
                       0  0 -1   0  1 -1   1  0 -1       1 -1  0   0 -1  1   0 -1  0
                       0  0  1   1  0  0   0  1  0      -1  1  0  -1  0  0  -1  0  1
                       0  0  1   0  1  0   1  0  0       1 -1  0   0 -1  0   0 -1  1
                       0  0 -1   1  0 -1   0  1 -1      -1  1  0  -1  0  1  -1  0  0
         symsigma        0
           tolwfr1     1.00000000E-16
           tolwfr2     0.00000000E+00
           tolwfr3     0.00000000E+00
           tolwfr4     0.00000000E+00
           tolwfr5     0.00000000E+00
           tolwfr6     0.00000000E+00
            typat      1  2
              wtk        0.75000    0.25000
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.0411561579E+00  1.0411561579E+00  1.0411561579E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.9675000000E+00  1.9675000000E+00  1.9675000000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl        6.00000   14.00000

================================================================================

 chkinp: Checking input parameters for consistency, jdtset=   1.

 chkinp: Checking input parameters for consistency, jdtset=   2.

 chkinp: Checking input parameters for consistency, jdtset=   3.

 chkinp: Checking input parameters for consistency, jdtset=   4.

 chkinp: Checking input parameters for consistency, jdtset=   5.

 chkinp: Checking input parameters for consistency, jdtset=   6.
 DATA TYPE INFORMATION: 
 REAL:      Data type name: REAL(DP) 
            Kind value:      8
            Precision:      15
            Smallest nonnegligible quantity relative to 1: 0.22204460E-015
            Smallest positive number:                      0.22250739E-307
            Largest representable number:                  0.17976931E+309
 INTEGER:   Data type name: INTEGER(default) 
            Kind value: 4
            Bit size:   32
            Largest representable number: 2147483647
 LOGICAL:   Data type name: LOGICAL 
            Kind value: 4
 CHARACTER: Data type name: CHARACTER             Kind value: 1

  ==== OpenMP parallelism is ON ====
- Max_threads:       1
- Num_threads:       1
- Num_procs:         1
- Dynamic:           F

  ==== Using MPI-2 specifications ==== 
  MPI-IO support is ON
  xmpi_tag_ub ................      1048575
  xmpi_bsize_ch ..............            1
  xmpi_bsize_int .............            4
  xmpi_bsize_sp ..............            4
  xmpi_bsize_dp ..............            8
  xmpi_bsize_spc .............            8
  xmpi_bsize_dpc .............           16
  xmpio_bsize_frm ............            4
  xmpi_address_kind ..........            8
  xmpi_offset_kind ...........            8
  MPI_WTICK ..................   3.448300646527281E-010

================================================================================
== DATASET  1 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
-    --> not optimal distribution: autoparal keyword recommended in input file <--


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2

- pspini: atom type   1  psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
- pspatm: opening atomic psp file    /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
-  Troullier-Martins psp for element  C         Thu Oct 27 17:29:33 EDT 1994
-  6.00000   4.00000    940714                znucl, zion, pspdat
    1    1    1    1      2001   0.00000      pspcod,pspxc,lmax,lloc,mmax,r2well
    0  10.372  24.987    1   1.4850707        l,e99.0,e99.9,nproj,rcpsp
   0.00000000   0.00000000   0.00000000   0.00000000     rms, ekb1, ekb2, epsatm
    1  15.431  21.987    0   1.4850707        l,e99.0,e99.9,nproj,rcpsp
   0.00000000   0.00000000   0.00000000   0.00000000     rms, ekb1, ekb2, epsatm
    0.83985002509544    0.99012430797080    0.51184907750884   rchrg,fchrg,qchrg
  pspatm : epsatm=    0.92590353
         --- l  ekb(1:nproj) -->
             0    4.921466
 pspatm: atomic psp has been read  and splines computed

- pspini: atom type   2  psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
- pspatm: opening atomic psp file    /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
-  Troullier-Martins psp for element  Si        Thu Oct 27 17:31:21 EDT 1994
- 14.00000   4.00000    940714                znucl, zion, pspdat
    1    1    2    2      2001   0.00000      pspcod,pspxc,lmax,lloc,mmax,r2well
    0   5.907  14.692    1   2.0872718        l,e99.0,e99.9,nproj,rcpsp
   0.00000000   0.00000000   0.00000000   0.00000000     rms, ekb1, ekb2, epsatm
    1   2.617   4.181    1   2.0872718        l,e99.0,e99.9,nproj,rcpsp
   0.00000000   0.00000000   0.00000000   0.00000000     rms, ekb1, ekb2, epsatm
    2   0.000   0.000    0   2.0872718        l,e99.0,e99.9,nproj,rcpsp
   0.00000000   0.00000000   0.00000000   0.00000000     rms, ekb1, ekb2, epsatm
    1.80626423934776    0.22824404341771    1.17378968127746   rchrg,fchrg,qchrg
  pspatm : epsatm=    1.43386982
         --- l  ekb(1:nproj) -->
             0    3.287949
             1    1.849886
 pspatm: atomic psp has been read  and splines computed

   1.88781868E+01                                ecore*ucvol(ha*bohr**3)
 ==== Info on pseudopotentials ====
  Norm-conserving pseudopotentials
  Number of pseudopotentials ..    2
  Number of types of atoms   ..    2
  Scalar calculation (no spin-orbit term)
  Nonlocal part applied using Legendre polynomials
  Max number of non-local projectors over l and type   1
  Highest angular momentum +1 .......   3
  Max number of (l,n)   components ..   2
  Max number of (l,m,n) components ..   2

 Pseudo-Core Charge Info: 
   Number of radial points for pseudo-core charge .. 2501
   XC core-correction treatment (optnlxccc) ........    1
   Radius for pseudo-core charge for each type ..... 

  - Atom type    1 has pseudo-core radius ..  2.5196
  - Atom type    2 has pseudo-core radius ..  5.4188

 Info on the Q-grid used for form factors in spline form: 
   Number of q-points for radial functions ffspl ..   3001
   Number of q-points for vlspl ...................   3001
   vloc is computed in Reciprocal Space
   model core charge treated in real-space

  XC functional for type 1 is 1
  Pseudo valence available: no
  XC functional for type 2 is 1
  Pseudo valence available: no

 symatm: atom number 1 is reached starting at atom
   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 symatm: atom number 2 is reached starting at atom
   2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
 wfconv:    15 bands initialized randomly with npw=    89, for ikpt=     1
_setup2: Arith. and geom. avg. npw (full set) are      87.500      87.461
 initro: for itypat=  1, take decay length=      0.7000,
 initro: indeed, coreel=      2.0000, nval=  4 and densty=  0.0000E+00.
 initro: for itypat=  2, take decay length=      1.1000,
 initro: indeed, coreel=     10.0000, nval=  4 and densty=  0.0000E+00.

================================================================================

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL

 1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL

 1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL

 ITER STEP NUMBER     1
 Max number of non-self-consistent loops: 2
 Total charge density [el/Bohr^3]
      Maximum=    2.3016E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.0283E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00

 1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
 ETOT  1  -10.123997816113    -1.012E+01 7.316E-04 3.643E+00
 scprqt: <Vxc>= -4.4885835E-01 hartree

 Simple mixing update:
  residual square of the potential:    1.94234864899511
{SCF_istep: 1 , Vnl|psi>: 120 , wall_time: '  0.33 [s] '} <<< TIME

 ITER STEP NUMBER     2
 Max number of non-self-consistent loops: 2
 Total charge density [el/Bohr^3]
      Maximum=    2.1648E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1237E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  2  -10.129036644536    -5.039E-03 5.963E-09 2.518E-01
 scprqt: <Vxc>= -4.5169199E-01 hartree

 Pulay update with  1 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=  0.846      0.154
{SCF_istep: 2 , Vnl|psi>: 120 , wall_time: '  0.03 [s] '} <<< TIME

 ITER STEP NUMBER     3
 Total charge density [el/Bohr^3]
      Maximum=    2.2051E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.0992E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  3  -10.129514527225    -4.779E-04 4.496E-05 1.239E-02
 scprqt: <Vxc>= -4.5118483E-01 hartree

 Pulay update with  2 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=  0.932      0.100     -0.318E-01
{SCF_istep: 3 , Vnl|psi>: 60 , wall_time: '  0.02 [s] '} <<< TIME

 ITER STEP NUMBER     4
 Total charge density [el/Bohr^3]
      Maximum=    2.1988E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  4  -10.129534869789    -2.034E-05 1.344E-06 2.152E-05
 scprqt: <Vxc>= -4.5129829E-01 hartree

 Pulay update with  3 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=   1.12     -0.110     -0.121E-01  0.210E-02
{SCF_istep: 4 , Vnl|psi>: 60 , wall_time: '  0.01 [s] '} <<< TIME

 ITER STEP NUMBER     5
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1051E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  5  -10.129534883945    -1.416E-08 2.753E-09 9.798E-08
 scprqt: <Vxc>= -4.5130220E-01 hartree

 Pulay update with  4 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=   1.13     -0.145      0.114E-01  0.118E-02 -0.236E-03
{SCF_istep: 5 , Vnl|psi>: 60 , wall_time: '  0.01 [s] '} <<< TIME

 ITER STEP NUMBER     6
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  6  -10.129534884009    -6.347E-11 1.351E-11 3.505E-10
 scprqt: <Vxc>= -4.5130248E-01 hartree

 Pulay update with  5 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=   1.09     -0.105      0.115E-01 -0.779E-03 -0.110E-03
{SCF_istep: 6 , Vnl|psi>: 60 , wall_time: '  0.01 [s] '} <<< TIME

 ITER STEP NUMBER     7
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  7  -10.129534884009    -5.382E-13 4.160E-14 1.604E-12
 scprqt: <Vxc>= -4.5130246E-01 hartree

 Pulay update with  6 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=   1.19     -0.201      0.168E-01 -0.173E-02  0.103E-03
{SCF_istep: 7 , Vnl|psi>: 60 , wall_time: '  0.01 [s] '} <<< TIME

 ITER STEP NUMBER     8
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  8  -10.129534884009     3.020E-14 2.277E-16 3.459E-14
 scprqt: <Vxc>= -4.5130247E-01 hartree

 Pulay update with  7 previous iterations:
 mixing of old trial potential: alpha(m:m-4)=   1.13     -0.138      0.110E-01 -0.804E-03  0.623E-04
{SCF_istep: 8 , Vnl|psi>: 53 , wall_time: '  0.00 [s] '} <<< TIME

 ITER STEP NUMBER     9
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 ETOT  9  -10.129534884009    -7.816E-14 1.555E-17 1.435E-16
 scprqt: <Vxc>= -4.5130247E-01 hartree

 At SCF step    9   max residual=  1.55E-17 < tolwfr=  1.00E-16 =>converged.

 -------------------------------------------------------------------------------------------------
 Ekinetic   = :     5.279020E+00 Ha ,    1.436494E+02 eV
 Evext_l    = :    -3.356801E+00 Ha ,   -9.134319E+01 eV
 Evext_nl   = :     1.895545E+00 Ha ,    5.158039E+01 eV
 Epsp_core  = :     1.549159E-01 Ha ,    4.215477E+00 eV
 Ehartree   = :     8.846303E-01 Ha ,    2.407202E+01 eV
 Exc_ks     = :    -4.035286E+00 Ha ,   -1.098057E+02 eV
 Enn        = :    -1.095156E+01 Ha ,   -2.980071E+02 eV
 -------------------------------------------------------------------------------------------------
 Etot       = :    -1.012953E+01 Ha ,   -2.756387E+02 eV
 -------------------------------------------------------------------------------------------------

 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.21943395E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.21943395E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.21943395E-05  sigma(2 1)=  0.00000000E+00


 fftdatar_write: About to write data to: t01o_DS1_DEN with iomode: IO_MODE_FORTRAN
 IO operation completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
- Creating HDf5 file with MPI-IO support: t01o_DS1_GSR.nc
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          4.49487117
    2        2.00000          2.28547042
================================================================================

 ----iterations are completed or convergence reached----


 === Gap info ===
  >>>> For spin  1
   Minimum direct gap =   5.7646 [eV], located at k-point      :  -0.2500  0.5000  0.0000
   Fundamental gap    =   3.4090 [eV], Top of valence bands at :  -0.2500  0.0000  0.0000
                                       Bottom of conduction at :  -0.2500  0.5000  0.0000
 Mean square residual over all n,k,spin=   51.941E-19; max=  15.548E-18
  -0.2500  0.5000  0.0000    1  3.34482E-05 kpt; spin; max resid(k); each band:
  4.41E-18 3.79E-18 3.62E-18 3.17E-18 7.84E-18 3.53E-18 4.24E-18 4.76E-18
  5.24E-18 1.55E-17 6.42E-18 4.34E-17 5.46E-17 4.14E-08 3.34E-05
  -0.2500  0.0000  0.0000    1  2.54663E-11 kpt; spin; max resid(k); each band:
  4.29E-18 4.10E-18 7.50E-18 7.50E-18 5.57E-18 2.89E-18 2.89E-18 6.50E-18
  3.26E-18 3.26E-18 4.43E-18 4.41E-18 6.45E-17 6.33E-17 2.55E-11

   outwf: writing wavefunctions to: t01o_DS1_WFK with iomode: IO_MODE_FORTRAN_MASTER
 WFK output completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 prteigrs : about to open file t01o_DS1_EIG
 Fermi (or HOMO) energy (hartree) =   0.41952   Average Vxc (hartree)=  -0.45130
 Eigenvalues (hartree) for nkpt=   2  k points:
 kpt#   1, nband= 15, wtk=  0.75000, kpt= -0.2500  0.5000  0.0000 (reduced coord)
  -0.07284    0.12378    0.25467    0.33295    0.54480    0.74296    0.84457    0.85043
   1.02148    1.12744    1.22394    1.29712    1.30730    1.52368    1.57789
 kpt#   2, nband= 15, wtk=  0.25000, kpt= -0.2500  0.0000  0.0000 (reduced coord)
  -0.18271    0.24113    0.41952    0.41952    0.64602    0.72652    0.72652    0.82820
   0.92344    0.92344    0.99152    1.25006    1.35240    1.35240    1.54792
 Fermi (or HOMO) energy (eV) =  11.41567   Average Vxc (eV)= -12.28056
 Eigenvalues (   eV  ) for nkpt=   2  k points:
 kpt#   1, nband= 15, wtk=  0.75000, kpt= -0.2500  0.5000  0.0000 (reduced coord)
  -1.98219    3.36823    6.93004    9.06006   14.82469   20.21688   22.98186   23.14127
  27.79587   30.67916   33.30523   35.29643   35.57353   41.46153   42.93669
 kpt#   2, nband= 15, wtk=  0.25000, kpt= -0.2500  0.0000  0.0000 (reduced coord)
  -4.97193    6.56152   11.41567   11.41567   17.57908   19.76957   19.76957   22.53655
  25.12796   25.12796   26.98073   34.01589   36.80062   36.80062   42.12102
 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
 Next maximum=    2.1987E-01  at reduced coord.    0.0667    0.8000    0.0667
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
 Next minimum=    1.1050E-02  at reduced coord.    0.2667    0.2000    0.2667
   Integrated=    8.0000E+00

 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.21943395E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.21943395E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.21943395E-05  sigma(2 1)=  0.00000000E+00

-Cartesian components of stress tensor (GPa)         [Pressure=  3.5877E-01 GPa]
- sigma(1 1)= -3.58769793E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -3.58769793E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -3.58769793E-01  sigma(2 1)=  0.00000000E+00

================================================================================
== DATASET  2 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...

 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 SCREENING: Calculation of the susceptibility and dielectric matrices 

 Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
 Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc =  8

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 ==== Dense FFT mesh used for densities and potentials ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16

 GW calculation type              =    0
 zcut to avoid poles in chi0 [eV] =   0.100000

 Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
 wfk_read_eigenvalues completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME

 Sorting g-vecs for an output of states on an unique "big" PW basis.
 Since the number of g's to be written on file
 was 0 or too large, it has been set to the max. value.,
 computed from the union of the sets of G vectors for the different k-points.
 Number of G-vectors is:   153

  ==== Info on the Cryst% object ====
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  3.9350000  3.9350000  G(1)= -0.1270648  0.1270648  0.1270648
 R(2)=  3.9350000  0.0000000  3.9350000  G(2)=  0.1270648 -0.1270648  0.1270648
 R(3)=  3.9350000  3.9350000  0.0000000  G(3)=  0.1270648  0.1270648 -0.1270648
 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 Time-reversal symmetry is present
 Reduced atomic positions [iatom, xred, symbol]:
    1)    0.0000000  0.0000000  0.0000000   C
    2)    0.2500000  0.2500000  0.2500000  Si
 ==== K-mesh for the wavefunctions ====
 Number of points in the irreducible wedge :     2
 Reduced coordinates and weights : 

     1)    -2.50000000E-01  5.00000000E-01  0.00000000E+00       0.75000
     2)    -2.50000000E-01  0.00000000E+00  0.00000000E+00       0.25000

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 ==== Q-mesh for the screening function ====
 Number of points in the irreducible wedge :     6
 Reduced coordinates and weights : 

     1)     0.00000000E+00  0.00000000E+00  0.00000000E+00       0.03125
     2)    -2.50000000E-01  0.00000000E+00  2.50000000E-01       0.37500
     3)     0.00000000E+00  5.00000000E-01  5.00000000E-01       0.09375
     4)     5.00000000E-01  0.00000000E+00  0.00000000E+00       0.12500
     5)    -2.50000000E-01  0.00000000E+00 -2.50000000E-01       0.18750
     6)    -2.50000000E-01  5.00000000E-01  2.50000000E-01       0.18750

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Optimal value for ng0sh: [2, 1, 1]
  Due to umklapp processes : ecutepspg0=    2.54959050831297     

 setmesh: npwwfn        =       65; Max (m1,m2,m3)   =      2     2     2
          npweps/npwsigx=       27; Max (mm1,mm2,mm3)=      4     3     3
          mG0 added     =   2  1  1
 calculated ecutwfn          =   5.099 [Ha] 
 calculated ecutsigx/ecuteps =   2.550 [Ha]
 using method =  2 with ecuteff =  14.860 [Ha]
 Finding a FFT mesh compatible with all the symmetries
 setmesh: divisor mesh 1 1 1
 setmesh: FFT mesh size selected  =     9x    9x    9
          total number of points  =          729


 integrate q->0 : numerical BZ geometry factor =     8.8829

 vcoul_init : cutoff-mode = AUXILIARY_FUNCTION
 q-points for optical limit:   1
     1)      0.000010    0.000020    0.000030

 ==== FFT mesh used for oscillator strengths ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Top of valence:  11.4157 (eV)
 Bottom of conduction:  14.8247 (eV)
 Fermi level: 13.1202  (eV) 

 Memory needed for Fourier components u(G):      0.0 [Mb] <<< MEM
 Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
 Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
 Memory needed for real-space u(r):      0.1 [Mb] <<< MEM
 Memory needed for bks_tab:      0.0 [Mb] <<< MEM
 wfd_init completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 ==== Info on the Wfd% object ====
  Number of irreducible k-points ........ 2
  Number of spinorial components ........ 1
  Number of spin-density components ..... 1
  Number of spin polarizations .......... 1
  Plane wave cutoff energy ..............   6.0
  Max number of G-vectors ............... 89
  Total number of FFT points ............ 729
  Number of FFT points treated by me .... 729


 ==== FFT mesh for wavefunctions ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16

 Total number of (b,k,s) states stored by this rank: 12
 Memory allocated for Fourier components u(G):      0.0 [Mb] <<< MEM
 Memory allocated for real-space u(r):      0.0 [Mb] <<< MEM
 Memory needed for wfd%s datastructure:      0.0 [Mb] <<< MEM
 Memory needed for wfd%s(0)%k datastructure:      0.0 [Mb] <<< MEM
 Memory allocated for Kdata array:      0.0 [Mb] <<< MEM



 wfd_read_wfk: Reading file: t01o_DS1_WFK  with iomode: IO_MODE_MPI , master_only: yes
 If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...` 
  to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
 About to read: 12  (b, k, s) states in total.
 For spin: 1 , will read: 2  k-points.
 Reading k-point [1/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 Reading k-point [2/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 WFK IO completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


  CHECK           -1          15
 planewave contribution to nelect:    8.0000
 Number of electrons calculated from density =    8.0000; Expected =    8.0000
 average of density, n =  0.065649
 r_s =    1.5378
 omega_plasma =   24.7154 [eV]

 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00

 calculating chi0 at frequencies [eV] :
  1    0.000000E+00    0.000000E+00
  2    0.000000E+00    1.360580E+01
 Memory required for chi0 matrix=          0.0 [Mb].


--------------------------------------------------------------------------------
  q-point number  1        q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
 Q-points for long wave-length limit. #   1
     1)      0.000010    0.000020    0.000030

 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 16 (b,b',k,s) states in chi0q0.
 Calculating chi0(q=(0,0,0),omega,G,G")

 ==== Little Group Info ==== 
  External point   0.00000000E+00  0.00000000E+00  0.00000000E+00
  Number of points in the IBZ defined by little group      2/   32
  Number of operations in the little group :  48/ 24

  No time-reversal symmetry with zero umklapp: 24
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp: 24
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status (      2 to be completed):
 ik=    1/  32 spin= 1 done by mpi rank:  0
 ik=   25/  32 spin= 1 done by mpi rank:  0
 cpu_time =       0.1, wall_time =       0.1
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  1, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -0.000   0.000  -0.000   0.000  -0.000  -0.000   0.000  -0.000   0.000
        0.000   0.000  -0.000   0.000  -0.000   0.000  -0.000   0.000  -0.000

    2   0.000  -7.031  -0.404  -0.404  -0.404  -0.460  -1.228  -1.228  -1.228
       -0.000   0.000   0.000   0.000   0.000  -1.564  -0.105  -0.105  -0.105

    3  -0.000  -0.404  -7.031  -0.404  -0.404  -1.228  -0.460  -1.228  -1.228
        0.000  -0.000   0.000   0.000  -0.000  -0.105  -1.564  -0.105  -0.105

    4   0.000  -0.404  -0.404  -7.031  -0.404  -1.228  -1.228  -0.460  -1.228
       -0.000  -0.000  -0.000   0.000   0.000  -0.105  -0.105  -1.564  -0.105

    5  -0.000  -0.404  -0.404  -0.404  -7.031  -1.228  -1.228  -1.228  -0.460
        0.000  -0.000   0.000  -0.000   0.000  -0.105  -0.105  -0.105  -1.564

    6  -0.000  -0.460  -1.228  -1.228  -1.228  -7.031  -0.404  -0.404  -0.404
       -0.000   1.564   0.105   0.105   0.105   0.000  -0.000  -0.000  -0.000

    7   0.000  -1.228  -0.460  -1.228  -1.228  -0.404  -7.031  -0.404  -0.404
        0.000   0.105   1.564   0.105   0.105   0.000   0.000  -0.000  -0.000

    8  -0.000  -1.228  -1.228  -0.460  -1.228  -0.404  -0.404  -7.031  -0.404
       -0.000   0.105   0.105   1.564   0.105   0.000   0.000   0.000  -0.000

    9   0.000  -1.228  -1.228  -1.228  -0.460  -0.404  -0.404  -0.404  -7.031
        0.000   0.105   0.105   0.105   1.564   0.000   0.000   0.000   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  1, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -0.000   0.000  -0.000   0.000  -0.000  -0.000   0.000  -0.000   0.000
        0.000   0.000  -0.000   0.000  -0.000   0.000  -0.000   0.000  -0.000

    2   0.000  -3.854  -0.234  -0.234  -0.234  -0.701  -0.604  -0.604  -0.604
       -0.000   0.000   0.000  -0.000  -0.000  -0.794  -0.048  -0.048  -0.048

    3  -0.000  -0.234  -3.854  -0.234  -0.234  -0.604  -0.701  -0.604  -0.604
        0.000  -0.000   0.000  -0.000  -0.000  -0.048  -0.794  -0.048  -0.048

    4   0.000  -0.234  -0.234  -3.854  -0.234  -0.604  -0.604  -0.701  -0.604
       -0.000   0.000   0.000   0.000  -0.000  -0.048  -0.048  -0.794  -0.048

    5  -0.000  -0.234  -0.234  -0.234  -3.854  -0.604  -0.604  -0.604  -0.701
        0.000   0.000   0.000   0.000   0.000  -0.048  -0.048  -0.048  -0.794

    6  -0.000  -0.701  -0.604  -0.604  -0.604  -3.854  -0.234  -0.234  -0.234
       -0.000   0.794   0.048   0.048   0.048   0.000  -0.000   0.000  -0.000

    7   0.000  -0.604  -0.701  -0.604  -0.604  -0.234  -3.854  -0.234  -0.234
        0.000   0.048   0.794   0.048   0.048   0.000   0.000   0.000   0.000

    8  -0.000  -0.604  -0.604  -0.701  -0.604  -0.234  -0.234  -3.854  -0.234
       -0.000   0.048   0.048   0.794   0.048  -0.000  -0.000   0.000   0.000

    9   0.000  -0.604  -0.604  -0.604  -0.701  -0.234  -0.234  -0.234  -3.854
        0.000   0.048   0.048   0.048   0.794   0.000  -0.000  -0.000   0.000

 Analyzing long wavelength limit for several q
 For q-point:  0.000010 0.000020 0.000030
  dielectric constant =  13.1891
  dielectric constant without local fields =  14.0996

  Average fulfillment of the sum rule on Im[epsilon] for q-point    1 :     16.37  [%]


--------------------------------------------------------------------------------
  q-point number  2        q = (-0.250000, 0.000000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 80 (b,b',k,s) states in chi0.
 Calculating chi0(q,omega,G,G")

 ==== Little Group Info ==== 
  External point  -2.50000000E-01  0.00000000E+00  2.50000000E-01
  Number of points in the IBZ defined by little group     10/   32
  Number of operations in the little group :   4/ 24

  No time-reversal symmetry with zero umklapp:  2
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp:  2
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status :     10 to be completed
 ik=    1/  32 spin=  1 done by mpi rank:  0
 ik=    2/  32 spin=  1 done by mpi rank:  0
 ik=    3/  32 spin=  1 done by mpi rank:  0
 ik=    4/  32 spin=  1 done by mpi rank:  0
 ik=    5/  32 spin=  1 done by mpi rank:  0
 ik=    6/  32 spin=  1 done by mpi rank:  0
 ik=    7/  32 spin=  1 done by mpi rank:  0
 ik=   25/  32 spin=  1 done by mpi rank:  0
 ik=   26/  32 spin=  1 done by mpi rank:  0
 ik=   27/  32 spin=  1 done by mpi rank:  0
 cpu_time =       0.0, wall_time =       0.0
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  2, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -7.810   0.492  -1.471  -1.503  -1.503  -1.471   0.492  -1.503  -1.503
        0.000  -0.204  -0.587  -0.663  -0.663   0.587   0.204   0.663   0.663

    2   0.492  -8.649  -0.403  -0.005  -0.005  -1.102  -0.332  -1.400  -1.400
        0.204   0.000   0.149   0.047   0.047  -0.969  -0.478  -0.014  -0.014

    3  -1.471  -0.403  -4.992  -0.262  -0.262  -0.843  -1.102  -0.886  -0.886
        0.587  -0.149   0.000  -0.031  -0.031   0.073  -0.969   0.074   0.074

    4  -1.503  -0.005  -0.262  -6.686  -0.616  -0.886  -1.400  -1.243  -1.010
        0.663  -0.047   0.031   0.000  -0.000   0.074  -0.014  -0.707   0.051

    5  -1.503  -0.005  -0.262  -0.616  -6.686  -0.886  -1.400  -1.010  -1.243
        0.663  -0.047   0.031   0.000   0.000   0.074  -0.014   0.051  -0.707

    6  -1.471  -1.102  -0.843  -0.886  -0.886  -4.992  -0.403  -0.262  -0.262
       -0.587   0.969  -0.073  -0.074  -0.074   0.000   0.149   0.031   0.031

    7   0.492  -0.332  -1.102  -1.400  -1.400  -0.403  -8.649  -0.005  -0.005
       -0.204   0.478   0.969   0.014   0.014  -0.149   0.000  -0.047  -0.047

    8  -1.503  -1.400  -0.886  -1.243  -1.010  -0.262  -0.005  -6.686  -0.616
       -0.663   0.014  -0.074   0.707  -0.051  -0.031   0.047   0.000  -0.000

    9  -1.503  -1.400  -0.886  -1.010  -1.243  -0.262  -0.005  -0.616  -6.686
       -0.663   0.014  -0.074  -0.051   0.707  -0.031   0.047   0.000   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  2, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -3.229   0.222  -0.646  -0.653  -0.653  -0.646   0.222  -0.653  -0.653
        0.000  -0.028  -0.289  -0.271  -0.271   0.289   0.028   0.271   0.271

    2   0.222  -4.327  -0.215  -0.174  -0.174  -0.742  -0.295  -0.631  -0.631
        0.028   0.000   0.064   0.018   0.018  -0.565  -0.159  -0.036  -0.036

    3  -0.646  -0.215  -2.612  -0.102  -0.102  -0.419  -0.742  -0.461  -0.461
        0.289  -0.064   0.000  -0.017  -0.017   0.015  -0.565   0.019   0.019

    4  -0.653  -0.174  -0.102  -3.501  -0.292  -0.461  -0.631  -0.828  -0.595
        0.271  -0.018   0.017   0.000   0.000   0.019  -0.036  -0.438   0.004

    5  -0.653  -0.174  -0.102  -0.292  -3.501  -0.461  -0.631  -0.595  -0.828
        0.271  -0.018   0.017  -0.000   0.000   0.019  -0.036   0.004  -0.438

    6  -0.646  -0.742  -0.419  -0.461  -0.461  -2.612  -0.215  -0.102  -0.102
       -0.289   0.565  -0.015  -0.019  -0.019   0.000   0.064   0.017   0.017

    7   0.222  -0.295  -0.742  -0.631  -0.631  -0.215  -4.327  -0.174  -0.174
       -0.028   0.159   0.565   0.036   0.036  -0.064   0.000  -0.018  -0.018

    8  -0.653  -0.631  -0.461  -0.828  -0.595  -0.102  -0.174  -3.501  -0.292
       -0.271   0.036  -0.019   0.438  -0.004  -0.017   0.018   0.000   0.000

    9  -0.653  -0.631  -0.461  -0.595  -0.828  -0.102  -0.174  -0.292  -3.501
       -0.271   0.036  -0.019  -0.004   0.438  -0.017   0.018  -0.000   0.000

  Average fulfillment of the sum rule on Im[epsilon] for q-point    2 :     45.55  [%]


--------------------------------------------------------------------------------
  q-point number  3        q = ( 0.000000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 48 (b,b',k,s) states in chi0.
 Calculating chi0(q,omega,G,G")

 ==== Little Group Info ==== 
  External point   0.00000000E+00  5.00000000E-01  5.00000000E-01
  Number of points in the IBZ defined by little group      6/   32
  Number of operations in the little group :   8/ 24

  No time-reversal symmetry with zero umklapp:  4
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp:  4
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status :      6 to be completed
 ik=    1/  32 spin=  1 done by mpi rank:  0
 ik=    2/  32 spin=  1 done by mpi rank:  0
 ik=    9/  32 spin=  1 done by mpi rank:  0
 ik=   10/  32 spin=  1 done by mpi rank:  0
 ik=   25/  32 spin=  1 done by mpi rank:  0
 ik=   26/  32 spin=  1 done by mpi rank:  0
 cpu_time =       0.0, wall_time =       0.0
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  3, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -8.749  -1.275  -1.288  -1.275  -1.288  -1.288  -1.275  -1.288  -1.275
        0.000  -0.522  -0.671  -0.522  -0.671   0.671   0.522   0.671   0.522

    2  -1.275  -8.175  -0.359   1.274  -0.359  -1.039  -1.279  -0.881  -1.279
        0.522   0.000  -0.006   0.000  -0.006  -0.523   0.000   0.024   0.000

    3  -1.288  -0.359  -4.538  -0.359   0.153  -0.732  -1.039  -0.732  -0.881
        0.671   0.006   0.000   0.006   0.000   0.034  -0.523   0.034   0.024

    4  -1.275   1.274  -0.359  -8.175  -0.359  -0.881  -1.279  -1.039  -1.279
        0.522  -0.000  -0.006   0.000  -0.006   0.024   0.000  -0.523   0.000

    5  -1.288  -0.359   0.153  -0.359  -4.538  -0.732  -0.881  -0.732  -1.039
        0.671   0.006  -0.000   0.006   0.000   0.034   0.024   0.034  -0.523

    6  -1.288  -1.039  -0.732  -0.881  -0.732  -4.538  -0.359   0.153  -0.359
       -0.671   0.523  -0.034  -0.024  -0.034   0.000  -0.006   0.000  -0.006

    7  -1.275  -1.279  -1.039  -1.279  -0.881  -0.359  -8.175  -0.359   1.274
       -0.522  -0.000   0.523  -0.000  -0.024   0.006   0.000   0.006   0.000

    8  -1.288  -0.881  -0.732  -1.039  -0.732   0.153  -0.359  -4.538  -0.359
       -0.671  -0.024  -0.034   0.523  -0.034  -0.000  -0.006   0.000  -0.006

    9  -1.275  -1.279  -0.881  -1.279  -1.039  -0.359   1.274  -0.359  -8.175
       -0.522  -0.000  -0.024  -0.000   0.523   0.006  -0.000   0.006   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  3, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -4.175  -0.592  -0.657  -0.592  -0.657  -0.657  -0.592  -0.657  -0.592
        0.000  -0.272  -0.311  -0.272  -0.311   0.311   0.272   0.311   0.272

    2  -0.592  -4.233  -0.166   0.186  -0.166  -0.706  -0.662  -0.430  -0.662
        0.272   0.000   0.016   0.000   0.016  -0.339   0.000   0.016   0.000

    3  -0.657  -0.166  -2.372  -0.166   0.041  -0.395  -0.706  -0.395  -0.430
        0.311  -0.016   0.000  -0.016  -0.000  -0.003  -0.339  -0.003   0.016

    4  -0.592   0.186  -0.166  -4.233  -0.166  -0.430  -0.662  -0.706  -0.662
        0.272  -0.000   0.016   0.000   0.016   0.016   0.000  -0.339   0.000

    5  -0.657  -0.166   0.041  -0.166  -2.372  -0.395  -0.430  -0.395  -0.706
        0.311  -0.016   0.000  -0.016   0.000  -0.003   0.016  -0.003  -0.339

    6  -0.657  -0.706  -0.395  -0.430  -0.395  -2.372  -0.166   0.041  -0.166
       -0.311   0.339   0.003  -0.016   0.003   0.000   0.016   0.000   0.016

    7  -0.592  -0.662  -0.706  -0.662  -0.430  -0.166  -4.233  -0.166   0.186
       -0.272  -0.000   0.339  -0.000  -0.016  -0.016   0.000  -0.016  -0.000

    8  -0.657  -0.430  -0.395  -0.706  -0.395   0.041  -0.166  -2.372  -0.166
       -0.311  -0.016   0.003   0.339   0.003  -0.000   0.016   0.000   0.016

    9  -0.592  -0.662  -0.430  -0.662  -0.706  -0.166   0.186  -0.166  -4.233
       -0.272  -0.000  -0.016  -0.000   0.339  -0.016   0.000  -0.016   0.000

  Average fulfillment of the sum rule on Im[epsilon] for q-point    3 :     37.02  [%]


--------------------------------------------------------------------------------
  q-point number  4        q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 80 (b,b',k,s) states in chi0.
 Calculating chi0(q,omega,G,G")

 ==== Little Group Info ==== 
  External point   5.00000000E-01  0.00000000E+00  0.00000000E+00
  Number of points in the IBZ defined by little group     10/   32
  Number of operations in the little group :   6/ 24

  No time-reversal symmetry with zero umklapp:  6
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp:  0
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status :     10 to be completed
 ik=    1/  32 spin=  1 done by mpi rank:  0
 ik=    2/  32 spin=  1 done by mpi rank:  0
 ik=    4/  32 spin=  1 done by mpi rank:  0
 ik=   13/  32 spin=  1 done by mpi rank:  0
 ik=   14/  32 spin=  1 done by mpi rank:  0
 ik=   16/  32 spin=  1 done by mpi rank:  0
 ik=   25/  32 spin=  1 done by mpi rank:  0
 ik=   26/  32 spin=  1 done by mpi rank:  0
 ik=   29/  32 spin=  1 done by mpi rank:  0
 ik=   30/  32 spin=  1 done by mpi rank:  0
 cpu_time =       0.0, wall_time =       0.0
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  4, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -7.630  -1.021  -1.171  -1.171  -1.171   2.341  -1.519  -1.519  -1.519
        0.000  -0.580  -0.658  -0.658  -0.658  -0.439   0.637   0.637   0.637

    2  -1.021  -3.943   0.044   0.044   0.044  -0.769  -0.701  -0.701  -0.701
        0.580   0.000  -0.028  -0.028  -0.028  -1.103   0.087   0.087   0.087

    3  -1.171   0.044  -7.436  -0.447  -0.447  -0.879  -1.169  -1.003  -1.003
        0.658   0.028   0.000   0.000  -0.000  -0.288  -0.663   0.060   0.060

    4  -1.171   0.044  -0.447  -7.436  -0.447  -0.879  -1.003  -1.169  -1.003
        0.658   0.028  -0.000   0.000  -0.000  -0.288   0.060  -0.663   0.060

    5  -1.171   0.044  -0.447  -0.447  -7.436  -0.879  -1.003  -1.003  -1.169
        0.658   0.028   0.000   0.000   0.000  -0.288   0.060   0.060  -0.663

    6   2.341  -0.769  -0.879  -0.879  -0.879  -7.630  -0.091  -0.091  -0.091
        0.439   1.103   0.288   0.288   0.288   0.000  -0.125  -0.125  -0.125

    7  -1.519  -0.701  -1.169  -1.003  -1.003  -0.091  -5.358  -0.288  -0.288
       -0.637  -0.087   0.663  -0.060  -0.060   0.125   0.000  -0.000   0.000

    8  -1.519  -0.701  -1.003  -1.169  -1.003  -0.091  -0.288  -5.358  -0.288
       -0.637  -0.087  -0.060   0.663  -0.060   0.125   0.000   0.000   0.000

    9  -1.519  -0.701  -1.003  -1.003  -1.169  -0.091  -0.288  -0.288  -5.358
       -0.637  -0.087  -0.060  -0.060   0.663   0.125  -0.000  -0.000   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  4, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -3.814  -0.580  -0.629  -0.629  -0.629   0.875  -0.700  -0.700  -0.700
        0.000  -0.334  -0.298  -0.298  -0.298  -0.227   0.319   0.319   0.319

    2  -0.580  -2.048  -0.028  -0.028  -0.028  -0.550  -0.383  -0.383  -0.383
        0.334   0.000  -0.028  -0.028  -0.028  -0.585   0.019   0.019   0.019

    3  -0.629  -0.028  -3.903  -0.283  -0.283  -0.392  -0.781  -0.528  -0.528
        0.298   0.028   0.000   0.000  -0.000  -0.106  -0.368   0.014   0.014

    4  -0.629  -0.028  -0.283  -3.903  -0.283  -0.392  -0.528  -0.781  -0.528
        0.298   0.028  -0.000   0.000  -0.000  -0.106   0.014  -0.368   0.014

    5  -0.629  -0.028  -0.283  -0.283  -3.903  -0.392  -0.528  -0.528  -0.781
        0.298   0.028   0.000   0.000   0.000  -0.106   0.014   0.014  -0.368

    6   0.875  -0.550  -0.392  -0.392  -0.392  -3.814  -0.159  -0.159  -0.159
        0.227   0.585   0.106   0.106   0.106   0.000  -0.044  -0.044  -0.044

    7  -0.700  -0.383  -0.781  -0.528  -0.528  -0.159  -2.865  -0.080  -0.080
       -0.319  -0.019   0.368  -0.014  -0.014   0.044   0.000  -0.000   0.000

    8  -0.700  -0.383  -0.528  -0.781  -0.528  -0.159  -0.080  -2.865  -0.080
       -0.319  -0.019  -0.014   0.368  -0.014   0.044   0.000   0.000   0.000

    9  -0.700  -0.383  -0.528  -0.528  -0.781  -0.159  -0.080  -0.080  -2.865
       -0.319  -0.019  -0.014  -0.014   0.368   0.044  -0.000  -0.000   0.000

  Average fulfillment of the sum rule on Im[epsilon] for q-point    4 :     43.29  [%]


--------------------------------------------------------------------------------
  q-point number  5        q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 48 (b,b',k,s) states in chi0.
 Calculating chi0(q,omega,G,G")

 ==== Little Group Info ==== 
  External point  -2.50000000E-01  0.00000000E+00 -2.50000000E-01
  Number of points in the IBZ defined by little group      6/   32
  Number of operations in the little group :   8/ 24

  No time-reversal symmetry with zero umklapp:  4
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp:  4
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status :      6 to be completed
 ik=    1/  32 spin=  1 done by mpi rank:  0
 ik=    3/  32 spin=  1 done by mpi rank:  0
 ik=    5/  32 spin=  1 done by mpi rank:  0
 ik=    6/  32 spin=  1 done by mpi rank:  0
 ik=   25/  32 spin=  1 done by mpi rank:  0
 ik=   27/  32 spin=  1 done by mpi rank:  0
 cpu_time =       0.0, wall_time =       0.0
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  5, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -5.874  -0.025  -0.025  -1.500  -1.500  -1.500  -1.500  -0.025  -0.025
        0.000  -0.233  -0.233  -0.534  -0.534   0.534   0.534   0.233   0.233

    2  -0.025  -7.890   0.785  -0.581  -0.581  -0.990  -1.153  -1.241  -1.241
        0.233   0.000   0.000   0.088   0.088  -1.064  -0.041  -0.104  -0.104

    3  -0.025   0.785  -7.890  -0.581  -0.581  -1.153  -0.990  -1.241  -1.241
        0.233  -0.000   0.000   0.088   0.088  -0.041  -1.064  -0.104  -0.104

    4  -1.500  -0.581  -0.581  -6.074  -0.361  -1.042  -1.042  -0.990  -1.153
        0.534  -0.088  -0.088   0.000  -0.000   0.073   0.073  -1.064  -0.041

    5  -1.500  -0.581  -0.581  -0.361  -6.074  -1.042  -1.042  -1.153  -0.990
        0.534  -0.088  -0.088   0.000   0.000   0.073   0.073  -0.041  -1.064

    6  -1.500  -0.990  -1.153  -1.042  -1.042  -6.074  -0.361  -0.581  -0.581
       -0.534   1.064   0.041  -0.073  -0.073   0.000  -0.000   0.088   0.088

    7  -1.500  -1.153  -0.990  -1.042  -1.042  -0.361  -6.074  -0.581  -0.581
       -0.534   0.041   1.064  -0.073  -0.073   0.000   0.000   0.088   0.088

    8  -0.025  -1.241  -1.241  -0.990  -1.153  -0.581  -0.581  -7.890   0.785
       -0.233   0.104   0.104   1.064   0.041  -0.088  -0.088   0.000  -0.000

    9  -0.025  -1.241  -1.241  -1.153  -0.990  -0.581  -0.581   0.785  -7.890
       -0.233   0.104   0.104   0.041   1.064  -0.088  -0.088   0.000   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  5, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -2.120  -0.014  -0.014  -0.584  -0.584  -0.584  -0.584  -0.014  -0.014
        0.000  -0.078  -0.078  -0.207  -0.207   0.207   0.207   0.078   0.078

    2  -0.014  -4.132   0.022  -0.279  -0.279  -0.788  -0.583  -0.636  -0.636
        0.078   0.000  -0.000   0.033   0.033  -0.619  -0.004  -0.079  -0.079

    3  -0.014   0.022  -4.132  -0.279  -0.279  -0.583  -0.788  -0.636  -0.636
        0.078   0.000   0.000   0.033   0.033  -0.004  -0.619  -0.079  -0.079

    4  -0.584  -0.279  -0.279  -3.218  -0.145  -0.508  -0.508  -0.788  -0.583
        0.207  -0.033  -0.033   0.000   0.000   0.012   0.012  -0.619  -0.004

    5  -0.584  -0.279  -0.279  -0.145  -3.218  -0.508  -0.508  -0.583  -0.788
        0.207  -0.033  -0.033  -0.000   0.000   0.012   0.012  -0.004  -0.619

    6  -0.584  -0.788  -0.583  -0.508  -0.508  -3.218  -0.145  -0.279  -0.279
       -0.207   0.619   0.004  -0.012  -0.012   0.000   0.000   0.033   0.033

    7  -0.584  -0.583  -0.788  -0.508  -0.508  -0.145  -3.218  -0.279  -0.279
       -0.207   0.004   0.619  -0.012  -0.012  -0.000   0.000   0.033   0.033

    8  -0.014  -0.636  -0.636  -0.788  -0.583  -0.279  -0.279  -4.132   0.022
       -0.078   0.079   0.079   0.619   0.004  -0.033  -0.033   0.000   0.000

    9  -0.014  -0.636  -0.636  -0.583  -0.788  -0.279  -0.279   0.022  -4.132
       -0.078   0.079   0.079   0.004   0.619  -0.033  -0.033  -0.000   0.000

  Average fulfillment of the sum rule on Im[epsilon] for q-point    5 :     59.68  [%]


--------------------------------------------------------------------------------
  q-point number  6        q = (-0.250000, 0.500000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
 Using spectral method for the imaginary part =  0
 Using symmetries to sum only over the IBZ_q  =  1
 Using faster algorithm based on time reversal symmetry.
 Will sum 128 (b,b',k,s) states in chi0.
 Calculating chi0(q,omega,G,G")

 ==== Little Group Info ==== 
  External point  -2.50000000E-01  5.00000000E-01  2.50000000E-01
  Number of points in the IBZ defined by little group     16/   32
  Number of operations in the little group :   2/ 24

  No time-reversal symmetry with zero umklapp:  1
  No time-reversal symmetry with non-zero umklapp:  0


  time-reversal symmetry with zero umklapp:  1
  time-reversal symmetry with non-zero umklapp:  0

 Calculation status :     16 to be completed
 ik=    1/  32 spin=  1 done by mpi rank:  0
 ik=    2/  32 spin=  1 done by mpi rank:  0
 ik=    3/  32 spin=  1 done by mpi rank:  0
 ik=    4/  32 spin=  1 done by mpi rank:  0
 ik=    5/  32 spin=  1 done by mpi rank:  0
 ik=    6/  32 spin=  1 done by mpi rank:  0
 ik=    7/  32 spin=  1 done by mpi rank:  0
 ik=    8/  32 spin=  1 done by mpi rank:  0
 ik=    9/  32 spin=  1 done by mpi rank:  0
 ik=   10/  32 spin=  1 done by mpi rank:  0
 ik=   11/  32 spin=  1 done by mpi rank:  0
 ik=   12/  32 spin=  1 done by mpi rank:  0
 ik=   25/  32 spin=  1 done by mpi rank:  0
 ik=   26/  32 spin=  1 done by mpi rank:  0
 ik=   27/  32 spin=  1 done by mpi rank:  0
 ik=   28/  32 spin=  1 done by mpi rank:  0
 cpu_time =       0.0, wall_time =       0.0
  chi0(G,G') at the    1 th omega   0.0000   0.0000 [eV]
  chi0(q =  6, omega =   1, G,G')
       1       2       3       4       5       6       7       8       9
    1  -9.281  -0.983  -1.325  -1.731  -1.204  -1.204  -1.731  -1.325  -0.983
        0.000  -0.599  -0.765  -0.678  -0.658   0.658   0.678   0.765   0.599

    2  -0.983  -9.281  -0.339   0.505  -0.455  -1.108  -1.282  -1.187  -0.306
        0.599   0.000   0.024  -0.000   0.048  -0.601   0.000   0.046   0.000

    3  -1.325  -0.339  -5.163  -0.336   0.179  -0.706  -1.125  -0.626  -1.187
        0.765  -0.024   0.000   0.063   0.052   0.050  -0.360  -0.006   0.046

    4  -1.731   0.505  -0.336  -6.843   0.116  -0.648  -0.996  -1.125  -1.282
        0.678   0.000  -0.063   0.000  -0.011   0.103  -0.000  -0.360   0.000

    5  -1.204  -0.455   0.179   0.116  -3.714  -0.774  -0.648  -0.706  -1.108
        0.658  -0.048  -0.052   0.011   0.000  -0.012   0.103   0.050  -0.601

    6  -1.204  -1.108  -0.706  -0.648  -0.774  -3.714   0.116   0.179  -0.455
       -0.658   0.601  -0.050  -0.103   0.012   0.000  -0.011   0.052   0.048

    7  -1.731  -1.282  -1.125  -0.996  -0.648   0.116  -6.843  -0.336   0.505
       -0.678  -0.000   0.360   0.000  -0.103   0.011   0.000   0.063  -0.000

    8  -1.325  -1.187  -0.626  -1.125  -0.706   0.179  -0.336  -5.163  -0.339
       -0.765  -0.046   0.006   0.360  -0.050  -0.052  -0.063   0.000   0.024

    9  -0.983  -0.306  -1.187  -1.282  -1.108  -0.455   0.505  -0.339  -9.281
       -0.599  -0.000  -0.046  -0.000   0.601  -0.048   0.000  -0.024   0.000

  chi0(G,G') at the    2 th omega   0.0000  13.6058 [eV]
  chi0(q =  6, omega =   2, G,G')
       1       2       3       4       5       6       7       8       9
    1  -4.318  -0.376  -0.707  -0.807  -0.577  -0.577  -0.807  -0.707  -0.376
        0.000  -0.233  -0.329  -0.342  -0.324   0.324   0.342   0.329   0.233

    2  -0.376  -4.318  -0.258  -0.029  -0.120  -0.618  -0.610  -0.474  -0.128
        0.233   0.000   0.038  -0.000   0.032  -0.315   0.000   0.003   0.000

    3  -0.707  -0.258  -2.653  -0.116   0.059  -0.369  -0.677  -0.418  -0.474
        0.329  -0.038   0.000   0.009   0.012   0.005  -0.258  -0.010   0.003

    4  -0.807  -0.029  -0.116  -3.564   0.014  -0.352  -0.608  -0.677  -0.610
        0.342   0.000  -0.009   0.000  -0.001   0.027  -0.000  -0.258   0.000

    5  -0.577  -0.120   0.059   0.014  -1.866  -0.389  -0.352  -0.369  -0.618
        0.324  -0.032  -0.012   0.001   0.000  -0.017   0.027   0.005  -0.315

    6  -0.577  -0.618  -0.369  -0.352  -0.389  -1.866   0.014   0.059  -0.120
       -0.324   0.315  -0.005  -0.027   0.017   0.000  -0.001   0.012   0.032

    7  -0.807  -0.610  -0.677  -0.608  -0.352   0.014  -3.564  -0.116  -0.029
       -0.342  -0.000   0.258   0.000  -0.027   0.001   0.000   0.009  -0.000

    8  -0.707  -0.474  -0.418  -0.677  -0.369   0.059  -0.116  -2.653  -0.258
       -0.329  -0.003   0.010   0.258  -0.005  -0.012  -0.009   0.000   0.038

    9  -0.376  -0.128  -0.474  -0.610  -0.618  -0.120  -0.029  -0.258  -4.318
       -0.233  -0.000  -0.003  -0.000   0.315  -0.032   0.000  -0.038   0.000

  Average fulfillment of the sum rule on Im[epsilon] for q-point    6 :     36.18  [%]

================================================================================
== DATASET  3 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...

 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.

 mkfilename : getscr/=0, take file _SCR from output of DATASET   2.


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 SIGMA: Calculation of the GW corrections 

 Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
 Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc =  8

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 ==== Dense FFT mesh used for densities and potentials ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
 wfk_read_eigenvalues completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME

 Sorting g-vecs for an output of states on an unique "big" PW basis.
 Since the number of g's to be written on file
 was 0 or too large, it has been set to the max. value.,
 computed from the union of the sets of G vectors for the different k-points.
 Number of G-vectors is:   153

  ==== Info on the Cryst% object ====
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  3.9350000  3.9350000  G(1)= -0.1270648  0.1270648  0.1270648
 R(2)=  3.9350000  0.0000000  3.9350000  G(2)=  0.1270648 -0.1270648  0.1270648
 R(3)=  3.9350000  3.9350000  0.0000000  G(3)=  0.1270648  0.1270648 -0.1270648
 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 Time-reversal symmetry is present
 Reduced atomic positions [iatom, xred, symbol]:
    1)    0.0000000  0.0000000  0.0000000   C
    2)    0.2500000  0.2500000  0.2500000  Si
 ==== K-mesh for the wavefunctions ====
 Number of points in the irreducible wedge :     2
 Reduced coordinates and weights : 

     1)    -2.50000000E-01  5.00000000E-01  0.00000000E+00       0.75000
     2)    -2.50000000E-01  0.00000000E+00  0.00000000E+00       0.25000

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Top of valence:  11.4157 (eV)
 Bottom of conduction:  14.8247 (eV)
 Fermi level: 13.1202  (eV) 



 Indirect band gap semiconductor
 Fundamental gap:     3.409 (eV)
   VBM:    11.416 (eV) at k: [-2.5000E-01,  0.0000E+00,  0.0000E+00]
   CBM:    14.825 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]
 Direct gap:         5.765 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]



  >>>> For spin  1
   Minimum direct gap =   5.7646 [eV], located at k-point      :  -0.2500  0.5000  0.0000
   Fundamental gap    =   3.4090 [eV], Top of valence bands at :  -0.2500  0.0000  0.0000
                                       Bottom of conduction at :  -0.2500  0.5000  0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
 SCR file: epsilon^-1 , calculated using inclvkb = 2
 TESTPARTICLE RPA
 Identifier                       4
 Kxc kernel                       0
 Treatment of q-->0 limit         2
 headform                        80
 fform                         1004
 gwcalctyp                        0
 Number of components             1       1
 Number of q-points               6
 Number of q-directions           1
 Number of frequencies            2
 Number of bands used            10
 Dimension of matrix             27
 Number of planewaves used       65
 Spectral method                  0
 Test_type                        0
 Time-ordering                    1
 Scissor Energy                 0.000000E+00
 Spectral smearing              1.000000E-01
 Complex Imaginary Shift        3.674933E-03
 The header contains additional records.
 ==== Q-mesh for screening function ====
 Number of points in the irreducible wedge :     6
 Reduced coordinates and weights : 

     1)     0.00000000E+00  0.00000000E+00  0.00000000E+00       0.03125
     2)    -2.50000000E-01  0.00000000E+00  2.50000000E-01       0.37500
     3)     0.00000000E+00  5.00000000E-01  5.00000000E-01       0.09375
     4)     5.00000000E-01  0.00000000E+00  0.00000000E+00       0.12500
     5)    -2.50000000E-01  0.00000000E+00 -2.50000000E-01       0.18750
     6)    -2.50000000E-01  5.00000000E-01  2.50000000E-01       0.18750

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Optimal value for ng0sh [1, 2, 1]

 vcoul_init : cutoff-mode = CRYSTAL
 q-points for optical limit:   1
     1)      0.000010    0.000020    0.000030

 setmesh: npwwfn        =       65; Max (m1,m2,m3)   =      2     2     2
          npweps/npwsigx=       27; Max (mm1,mm2,mm3)=      3     4     3
          mG0 added     =   1  2  1
 calculated ecutwfn          =   5.099 [Ha] 
 calculated ecutsigx/ecuteps =   2.550 [Ha]
 using method =  2 with ecuteff =  14.860 [Ha]
 Finding a FFT mesh compatible with all the symmetries
 setmesh: divisor mesh 1 1 1
 setmesh: FFT mesh size selected  =     9x    9x    9
          total number of points  =          729


 ==== FFT mesh for oscillator strengths used for Sigma_c ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16

 ==== FFT mesh for oscillator strengths used for Sigma_x ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Memory needed for Fourier components u(G):      0.0 [Mb] <<< MEM
 Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
 Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
 Memory needed for real-space u(r):      0.1 [Mb] <<< MEM
 Memory needed for bks_tab:      0.0 [Mb] <<< MEM
 wfd_init completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 wfd_read_wfk: Reading file: t01o_DS1_WFK  with iomode: IO_MODE_MPI , master_only: yes
 If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...` 
  to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
 About to read: 7  (b, k, s) states in total.
 For spin: 1 , will read: 2  k-points.
 Reading k-point [1/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 Reading k-point [2/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 WFK IO completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 planewave contribution to nelect:    8.0000
 Number of electrons calculated from density =    8.0000; Expected =    8.0000
 average of density, n =  0.065649
 r_s =    1.5378
 omega_plasma =   24.7154 [eV]

 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
 For spin  1 Min density rhor =     0.110504E-01
 E_xc[n_val]  =  -3.0696 [Ha]. <V_xc[n_val]> =  -0.4305 [Ha].
 Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.

 === Matrix elements in the KS basis set [eV] ===
 kpt= ( -2.50000000E-01  5.00000000E-01  0.00000000E+00) spin= 1:
  ib vxc       vxcval    vhartree
   4 -14.32103 -13.80525   6.37050
   5 -11.97096 -11.45292  -1.08018
 Er%ID:            4 , Er%Hscr%ID:            4
 Memory needed for Er%epsm1 =          0.1 [Mb] <<< MEM
 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  4.989594028744
            omega twiddle min location =     2    6

 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  3.796814495765
            omega twiddle min location =    21   26

 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  5.122295956029
            omega twiddle min location =    14   25

 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  7.870310828743
            omega twiddle min location =    26   24

 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  4.877316001779
            omega twiddle min location =     8   11

 Imaginary frequency for fit located at:   13.6058 [eV]

 cppm1par : omega twiddle minval [eV]  =  4.615782317454
            omega twiddle min location =    26   18

 SIGMA fundamental parameters:
 PLASMON POLE MODEL  1
 number of plane-waves for SigmaX                   27
 number of plane-waves for SigmaC and W             27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of independent spin polarizations            1
 number of spinorial components                      1
 number of k-points in IBZ                           2
 number of q-points in IBZ                           6
 number of symmetry operations                      24
 number of k-points in BZ                           32
 number of q-points in BZ                           32
 number of frequencies for dSigma/dE                 5
 frequency step for dSigma/dE [eV]                0.25
 number of omega for Sigma on real axis              0
 max omega for Sigma on real axis  [eV]           0.00
 zcut for avoiding poles [eV]                     0.10

 EPSILON^-1 parameters (SCR file):
 dimension of the eps^-1 matrix on file             27
 dimension of the eps^-1 matrix used                27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of q-points in IBZ                           6
 number of frequencies                               2
 number of real frequencies                          1
 number of imag frequencies                          1

 matrix elements of self-energy operator (all in [eV])

 Perturbative Calculation
 ==== Info on the Wfd% object ====
  Number of irreducible k-points ........ 2
  Number of spinorial components ........ 1
  Number of spin-density components ..... 1
  Number of spin polarizations .......... 1
  Plane wave cutoff energy ..............   6.0
  Max number of G-vectors ............... 89
  Total number of FFT points ............ 3375
  Number of FFT points treated by me .... 3375


 ==== FFT mesh for wavefunctions ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16

 Total number of (b,k,s) states stored by this rank: 7
 Memory allocated for Fourier components u(G):      0.0 [Mb] <<< MEM
 Memory allocated for real-space u(r):      0.2 [Mb] <<< MEM
 Memory needed for wfd%s datastructure:      0.0 [Mb] <<< MEM
 Memory needed for wfd%s(0)%k datastructure:      0.0 [Mb] <<< MEM
 Memory allocated for Kdata array:      0.0 [Mb] <<< MEM

 standard GW with PPM
 Perturbative Calculation

 Calculating <nk|Sigma_x|nk> at k=    0.250   0.750   0.250
 bands from   4 to   5

 Will sum   38 (b, k, s) occupied states in Sigma_x.

 calc_sigx_me: calculation status (32 to be completed):
 calc_sigx_me: ik_bz    1/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    2/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    3/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    4/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    5/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    6/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    7/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    8/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    9/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   10/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   11/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   12/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   13/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   14/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   15/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   16/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   17/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   18/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   19/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   20/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   21/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   22/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   23/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   24/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   25/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   26/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   27/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   28/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   29/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   30/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   31/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   32/  32 done by mpi-rank:   0
 cpu_time =       0.0, wall_time =       0.0

 Calculating <nk|Sigma_c(omega)|nk> at k =    0.250   0.750   0.250
 bands n = from   4 to   5

 standard GW with PPM
 Will sum 84 (b,k,s) states in Sigma_c.

 calculation status (     32 to be completed):
 Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
 cpu_time =       0.0, wall_time =       0.0

 k =    0.250   0.750   0.250
 Band     E0 <VxcDFT>   SigX SigC(E0)      Z dSigC/dE  Sig(E)    E-E0       E
    4   9.060 -13.805 -16.189   3.740   0.809  -0.236 -12.707   1.098  10.158
    4   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000  -0.000
    5  14.825 -11.453  -5.994  -3.070   0.838  -0.194  -9.452   2.001  16.826
    5   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

 E^0_gap          5.765
 E^GW_gap         6.668
 DeltaE^GW_gap    0.903

- Creating HDf5 file with MPI-IO support: t01o_DS3_SIGRES.nc

================================================================================
== DATASET  4 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...

 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.

 mkfilename : getscr/=0, take file _SCR from output of DATASET   2.


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 SIGMA: Calculation of the GW corrections 

 Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
 Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc =  8

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 ==== Dense FFT mesh used for densities and potentials ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
 wfk_read_eigenvalues completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME

 Sorting g-vecs for an output of states on an unique "big" PW basis.
 Since the number of g's to be written on file
 was 0 or too large, it has been set to the max. value.,
 computed from the union of the sets of G vectors for the different k-points.
 Number of G-vectors is:   153

  ==== Info on the Cryst% object ====
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  3.9350000  3.9350000  G(1)= -0.1270648  0.1270648  0.1270648
 R(2)=  3.9350000  0.0000000  3.9350000  G(2)=  0.1270648 -0.1270648  0.1270648
 R(3)=  3.9350000  3.9350000  0.0000000  G(3)=  0.1270648  0.1270648 -0.1270648
 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 Time-reversal symmetry is present
 Reduced atomic positions [iatom, xred, symbol]:
    1)    0.0000000  0.0000000  0.0000000   C
    2)    0.2500000  0.2500000  0.2500000  Si
 ==== K-mesh for the wavefunctions ====
 Number of points in the irreducible wedge :     2
 Reduced coordinates and weights : 

     1)    -2.50000000E-01  5.00000000E-01  0.00000000E+00       0.75000
     2)    -2.50000000E-01  0.00000000E+00  0.00000000E+00       0.25000

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Top of valence:  11.4157 (eV)
 Bottom of conduction:  14.8247 (eV)
 Fermi level: 13.1202  (eV) 



 Indirect band gap semiconductor
 Fundamental gap:     3.409 (eV)
   VBM:    11.416 (eV) at k: [-2.5000E-01,  0.0000E+00,  0.0000E+00]
   CBM:    14.825 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]
 Direct gap:         5.765 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]



  >>>> For spin  1
   Minimum direct gap =   5.7646 [eV], located at k-point      :  -0.2500  0.5000  0.0000
   Fundamental gap    =   3.4090 [eV], Top of valence bands at :  -0.2500  0.0000  0.0000
                                       Bottom of conduction at :  -0.2500  0.5000  0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
 SCR file: epsilon^-1 , calculated using inclvkb = 2
 TESTPARTICLE RPA
 Identifier                       4
 Kxc kernel                       0
 Treatment of q-->0 limit         2
 headform                        80
 fform                         1004
 gwcalctyp                        0
 Number of components             1       1
 Number of q-points               6
 Number of q-directions           1
 Number of frequencies            2
 Number of bands used            10
 Dimension of matrix             27
 Number of planewaves used       65
 Spectral method                  0
 Test_type                        0
 Time-ordering                    1
 Scissor Energy                 0.000000E+00
 Spectral smearing              1.000000E-01
 Complex Imaginary Shift        3.674933E-03
 The header contains additional records.
 ==== Q-mesh for screening function ====
 Number of points in the irreducible wedge :     6
 Reduced coordinates and weights : 

     1)     0.00000000E+00  0.00000000E+00  0.00000000E+00       0.03125
     2)    -2.50000000E-01  0.00000000E+00  2.50000000E-01       0.37500
     3)     0.00000000E+00  5.00000000E-01  5.00000000E-01       0.09375
     4)     5.00000000E-01  0.00000000E+00  0.00000000E+00       0.12500
     5)    -2.50000000E-01  0.00000000E+00 -2.50000000E-01       0.18750
     6)    -2.50000000E-01  5.00000000E-01  2.50000000E-01       0.18750

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Optimal value for ng0sh [1, 2, 1]

 vcoul_init : cutoff-mode = CRYSTAL
 q-points for optical limit:   1
     1)      0.000010    0.000020    0.000030

 setmesh: npwwfn        =       65; Max (m1,m2,m3)   =      2     2     2
          npweps/npwsigx=       27; Max (mm1,mm2,mm3)=      3     4     3
          mG0 added     =   1  2  1
 calculated ecutwfn          =   5.099 [Ha] 
 calculated ecutsigx/ecuteps =   2.550 [Ha]
 using method =  2 with ecuteff =  14.860 [Ha]
 Finding a FFT mesh compatible with all the symmetries
 setmesh: divisor mesh 1 1 1
 setmesh: FFT mesh size selected  =     9x    9x    9
          total number of points  =          729


 ==== FFT mesh for oscillator strengths used for Sigma_c ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16

 ==== FFT mesh for oscillator strengths used for Sigma_x ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Memory needed for Fourier components u(G):      0.0 [Mb] <<< MEM
 Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
 Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
 Memory needed for real-space u(r):      0.1 [Mb] <<< MEM
 Memory needed for bks_tab:      0.0 [Mb] <<< MEM
 wfd_init completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 wfd_read_wfk: Reading file: t01o_DS1_WFK  with iomode: IO_MODE_MPI , master_only: yes
 If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...` 
  to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
 About to read: 7  (b, k, s) states in total.
 For spin: 1 , will read: 2  k-points.
 Reading k-point [1/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 Reading k-point [2/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 WFK IO completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 planewave contribution to nelect:    8.0000
 Number of electrons calculated from density =    8.0000; Expected =    8.0000
 average of density, n =  0.065649
 r_s =    1.5378
 omega_plasma =   24.7154 [eV]

 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
 For spin  1 Min density rhor =     0.110504E-01
 E_xc[n_val]  =  -3.0696 [Ha]. <V_xc[n_val]> =  -0.4305 [Ha].
 Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.

 === Matrix elements in the KS basis set [eV] ===
 kpt= ( -2.50000000E-01  5.00000000E-01  0.00000000E+00) spin= 1:
  ib vxc       vxcval    vhartree
   4 -14.32103 -13.80525   6.37050
   5 -11.97096 -11.45292  -1.08018
 Er%ID:            4 , Er%Hscr%ID:            4
 Memory needed for Er%epsm1 =          0.1 [Mb] <<< MEM
 at q-point :     0.000000    0.000000    0.000000 number of imaginary plasmonpole frequencies =      446 /      729

 cppm2par : omega twiddle minval [eV]  =  20.15769711
            omega twiddle min location =     9    5
 at q-point :    -0.250000    0.000000    0.250000 number of imaginary plasmonpole frequencies =      344 /      729

 cppm2par : omega twiddle minval [eV]  =   8.68811274
            omega twiddle min location =    23    1
 at q-point :     0.000000    0.500000    0.500000 number of imaginary plasmonpole frequencies =      364 /      729

 cppm2par : omega twiddle minval [eV]  =   8.43537335
            omega twiddle min location =     2    4
 at q-point :     0.500000    0.000000    0.000000 number of imaginary plasmonpole frequencies =      348 /      729

 cppm2par : omega twiddle minval [eV]  =  10.45595855
            omega twiddle min location =    15    8
 at q-point :    -0.250000    0.000000   -0.250000 number of imaginary plasmonpole frequencies =      348 /      729

 cppm2par : omega twiddle minval [eV]  =   7.85335652
            omega twiddle min location =    16   18
 at q-point :    -0.250000    0.500000    0.250000 number of imaginary plasmonpole frequencies =      302 /      729

 cppm2par : omega twiddle minval [eV]  =   4.51560294
            omega twiddle min location =    27    1
 SIGMA fundamental parameters:
 PLASMON POLE MODEL  2
 number of plane-waves for SigmaX                   27
 number of plane-waves for SigmaC and W             27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of independent spin polarizations            1
 number of spinorial components                      1
 number of k-points in IBZ                           2
 number of q-points in IBZ                           6
 number of symmetry operations                      24
 number of k-points in BZ                           32
 number of q-points in BZ                           32
 number of frequencies for dSigma/dE                 5
 frequency step for dSigma/dE [eV]                0.25
 number of omega for Sigma on real axis              0
 max omega for Sigma on real axis  [eV]           0.00
 zcut for avoiding poles [eV]                     0.10

 EPSILON^-1 parameters (SCR file):
 dimension of the eps^-1 matrix on file             27
 dimension of the eps^-1 matrix used                27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of q-points in IBZ                           6
 number of frequencies                               2
 number of real frequencies                          1
 number of imag frequencies                          1

 matrix elements of self-energy operator (all in [eV])

 Perturbative Calculation
 ==== Info on the Wfd% object ====
  Number of irreducible k-points ........ 2
  Number of spinorial components ........ 1
  Number of spin-density components ..... 1
  Number of spin polarizations .......... 1
  Plane wave cutoff energy ..............   6.0
  Max number of G-vectors ............... 89
  Total number of FFT points ............ 3375
  Number of FFT points treated by me .... 3375


 ==== FFT mesh for wavefunctions ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16

 Total number of (b,k,s) states stored by this rank: 7
 Memory allocated for Fourier components u(G):      0.0 [Mb] <<< MEM
 Memory allocated for real-space u(r):      0.2 [Mb] <<< MEM
 Memory needed for wfd%s datastructure:      0.0 [Mb] <<< MEM
 Memory needed for wfd%s(0)%k datastructure:      0.0 [Mb] <<< MEM
 Memory allocated for Kdata array:      0.0 [Mb] <<< MEM

 standard GW with PPM
 Perturbative Calculation

 Calculating <nk|Sigma_x|nk> at k=    0.250   0.750   0.250
 bands from   4 to   5

 Will sum   38 (b, k, s) occupied states in Sigma_x.

 calc_sigx_me: calculation status (32 to be completed):
 calc_sigx_me: ik_bz    1/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    2/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    3/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    4/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    5/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    6/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    7/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    8/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    9/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   10/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   11/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   12/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   13/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   14/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   15/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   16/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   17/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   18/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   19/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   20/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   21/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   22/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   23/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   24/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   25/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   26/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   27/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   28/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   29/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   30/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   31/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   32/  32 done by mpi-rank:   0
 cpu_time =       0.0, wall_time =       0.0

 Calculating <nk|Sigma_c(omega)|nk> at k =    0.250   0.750   0.250
 bands n = from   4 to   5

 standard GW with PPM
 Will sum 84 (b,k,s) states in Sigma_c.

 calculation status (     32 to be completed):
 Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
 cpu_time =       0.0, wall_time =       0.0

 k =    0.250   0.750   0.250
 Band     E0 <VxcDFT>   SigX SigC(E0)      Z dSigC/dE  Sig(E)    E-E0       E
    4   9.060 -13.805 -16.189   3.646   0.842  -0.187 -12.741   1.064  10.124
    4   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000  -0.000
    5  14.825 -11.453  -5.994  -3.097   0.861  -0.162  -9.421   2.032  16.857
    5   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000  -0.000

 E^0_gap          5.765
 E^GW_gap         6.733
 DeltaE^GW_gap    0.968

- Creating HDf5 file with MPI-IO support: t01o_DS4_SIGRES.nc

================================================================================
== DATASET  5 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...

 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.

 mkfilename : getscr/=0, take file _SCR from output of DATASET   2.


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 SIGMA: Calculation of the GW corrections 

 Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
 Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc =  8

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 ==== Dense FFT mesh used for densities and potentials ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
 wfk_read_eigenvalues completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME

 Sorting g-vecs for an output of states on an unique "big" PW basis.
 Since the number of g's to be written on file
 was 0 or too large, it has been set to the max. value.,
 computed from the union of the sets of G vectors for the different k-points.
 Number of G-vectors is:   153

  ==== Info on the Cryst% object ====
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  3.9350000  3.9350000  G(1)= -0.1270648  0.1270648  0.1270648
 R(2)=  3.9350000  0.0000000  3.9350000  G(2)=  0.1270648 -0.1270648  0.1270648
 R(3)=  3.9350000  3.9350000  0.0000000  G(3)=  0.1270648  0.1270648 -0.1270648
 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 Time-reversal symmetry is present
 Reduced atomic positions [iatom, xred, symbol]:
    1)    0.0000000  0.0000000  0.0000000   C
    2)    0.2500000  0.2500000  0.2500000  Si
 ==== K-mesh for the wavefunctions ====
 Number of points in the irreducible wedge :     2
 Reduced coordinates and weights : 

     1)    -2.50000000E-01  5.00000000E-01  0.00000000E+00       0.75000
     2)    -2.50000000E-01  0.00000000E+00  0.00000000E+00       0.25000

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Top of valence:  11.4157 (eV)
 Bottom of conduction:  14.8247 (eV)
 Fermi level: 13.1202  (eV) 



 Indirect band gap semiconductor
 Fundamental gap:     3.409 (eV)
   VBM:    11.416 (eV) at k: [-2.5000E-01,  0.0000E+00,  0.0000E+00]
   CBM:    14.825 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]
 Direct gap:         5.765 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]



  >>>> For spin  1
   Minimum direct gap =   5.7646 [eV], located at k-point      :  -0.2500  0.5000  0.0000
   Fundamental gap    =   3.4090 [eV], Top of valence bands at :  -0.2500  0.0000  0.0000
                                       Bottom of conduction at :  -0.2500  0.5000  0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
 SCR file: epsilon^-1 , calculated using inclvkb = 2
 TESTPARTICLE RPA
 Identifier                       4
 Kxc kernel                       0
 Treatment of q-->0 limit         2
 headform                        80
 fform                         1004
 gwcalctyp                        0
 Number of components             1       1
 Number of q-points               6
 Number of q-directions           1
 Number of frequencies            2
 Number of bands used            10
 Dimension of matrix             27
 Number of planewaves used       65
 Spectral method                  0
 Test_type                        0
 Time-ordering                    1
 Scissor Energy                 0.000000E+00
 Spectral smearing              1.000000E-01
 Complex Imaginary Shift        3.674933E-03
 The header contains additional records.
 ==== Q-mesh for screening function ====
 Number of points in the irreducible wedge :     6
 Reduced coordinates and weights : 

     1)     0.00000000E+00  0.00000000E+00  0.00000000E+00       0.03125
     2)    -2.50000000E-01  0.00000000E+00  2.50000000E-01       0.37500
     3)     0.00000000E+00  5.00000000E-01  5.00000000E-01       0.09375
     4)     5.00000000E-01  0.00000000E+00  0.00000000E+00       0.12500
     5)    -2.50000000E-01  0.00000000E+00 -2.50000000E-01       0.18750
     6)    -2.50000000E-01  5.00000000E-01  2.50000000E-01       0.18750

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Optimal value for ng0sh [1, 2, 1]

 vcoul_init : cutoff-mode = CRYSTAL
 q-points for optical limit:   1
     1)      0.000010    0.000020    0.000030

 setmesh: npwwfn        =       65; Max (m1,m2,m3)   =      2     2     2
          npweps/npwsigx=       27; Max (mm1,mm2,mm3)=      3     4     3
          mG0 added     =   1  2  1
 calculated ecutwfn          =   5.099 [Ha] 
 calculated ecutsigx/ecuteps =   2.550 [Ha]
 using method =  2 with ecuteff =  14.860 [Ha]
 Finding a FFT mesh compatible with all the symmetries
 setmesh: divisor mesh 1 1 1
 setmesh: FFT mesh size selected  =     9x    9x    9
          total number of points  =          729


 ==== FFT mesh for oscillator strengths used for Sigma_c ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16

 ==== FFT mesh for oscillator strengths used for Sigma_x ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Memory needed for Fourier components u(G):      0.0 [Mb] <<< MEM
 Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
 Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
 Memory needed for real-space u(r):      0.1 [Mb] <<< MEM
 Memory needed for bks_tab:      0.0 [Mb] <<< MEM
 wfd_init completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 wfd_read_wfk: Reading file: t01o_DS1_WFK  with iomode: IO_MODE_MPI , master_only: yes
 If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...` 
  to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
 About to read: 7  (b, k, s) states in total.
 For spin: 1 , will read: 2  k-points.
 Reading k-point [1/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 Reading k-point [2/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 WFK IO completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 planewave contribution to nelect:    8.0000
 Number of electrons calculated from density =    8.0000; Expected =    8.0000
 average of density, n =  0.065649
 r_s =    1.5378
 omega_plasma =   24.7154 [eV]

 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
 For spin  1 Min density rhor =     0.110504E-01
 E_xc[n_val]  =  -3.0696 [Ha]. <V_xc[n_val]> =  -0.4305 [Ha].
 Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.

 === Matrix elements in the KS basis set [eV] ===
 kpt= ( -2.50000000E-01  5.00000000E-01  0.00000000E+00) spin= 1:
  ib vxc       vxcval    vhartree
   4 -14.32103 -13.80525   6.37050
   5 -11.97096 -11.45292  -1.08018
 Er%ID:            4 , Er%Hscr%ID:            4
 Memory needed for Er%epsm1 =          0.1 [Mb] <<< MEM

 cppm3par : omega twiddle minval [eV]  =  25.62073931
            omega twiddle min location =     1

 cppm3par : omega twiddle minval [eV]  =  30.99804033
            omega twiddle min location =     1

 cppm3par : omega twiddle minval [eV]  =  33.54916967
            omega twiddle min location =     2

 cppm3par : omega twiddle minval [eV]  =  33.97992408
            omega twiddle min location =     1

 cppm3par : omega twiddle minval [eV]  =  29.22693245
            omega twiddle min location =     1

 cppm3par : omega twiddle minval [eV]  =  33.51334146
            omega twiddle min location =     1
 SIGMA fundamental parameters:
 PLASMON POLE MODEL  3
 number of plane-waves for SigmaX                   27
 number of plane-waves for SigmaC and W             27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of independent spin polarizations            1
 number of spinorial components                      1
 number of k-points in IBZ                           2
 number of q-points in IBZ                           6
 number of symmetry operations                      24
 number of k-points in BZ                           32
 number of q-points in BZ                           32
 number of frequencies for dSigma/dE                 5
 frequency step for dSigma/dE [eV]                0.25
 number of omega for Sigma on real axis              0
 max omega for Sigma on real axis  [eV]           0.00
 zcut for avoiding poles [eV]                     0.10

 EPSILON^-1 parameters (SCR file):
 dimension of the eps^-1 matrix on file             27
 dimension of the eps^-1 matrix used                27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of q-points in IBZ                           6
 number of frequencies                               2
 number of real frequencies                          1
 number of imag frequencies                          1

 matrix elements of self-energy operator (all in [eV])

 Perturbative Calculation
 ==== Info on the Wfd% object ====
  Number of irreducible k-points ........ 2
  Number of spinorial components ........ 1
  Number of spin-density components ..... 1
  Number of spin polarizations .......... 1
  Plane wave cutoff energy ..............   6.0
  Max number of G-vectors ............... 89
  Total number of FFT points ............ 3375
  Number of FFT points treated by me .... 3375


 ==== FFT mesh for wavefunctions ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16

 Total number of (b,k,s) states stored by this rank: 7
 Memory allocated for Fourier components u(G):      0.0 [Mb] <<< MEM
 Memory allocated for real-space u(r):      0.2 [Mb] <<< MEM
 Memory needed for wfd%s datastructure:      0.0 [Mb] <<< MEM
 Memory needed for wfd%s(0)%k datastructure:      0.0 [Mb] <<< MEM
 Memory allocated for Kdata array:      0.0 [Mb] <<< MEM

 standard GW with PPM
 Perturbative Calculation

 Calculating <nk|Sigma_x|nk> at k=    0.250   0.750   0.250
 bands from   4 to   5

 Will sum   38 (b, k, s) occupied states in Sigma_x.

 calc_sigx_me: calculation status (32 to be completed):
 calc_sigx_me: ik_bz    1/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    2/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    3/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    4/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    5/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    6/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    7/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    8/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    9/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   10/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   11/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   12/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   13/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   14/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   15/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   16/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   17/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   18/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   19/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   20/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   21/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   22/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   23/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   24/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   25/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   26/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   27/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   28/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   29/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   30/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   31/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   32/  32 done by mpi-rank:   0
 cpu_time =       0.0, wall_time =       0.0

 Calculating <nk|Sigma_c(omega)|nk> at k =    0.250   0.750   0.250
 bands n = from   4 to   5

 standard GW with PPM
 Will sum 84 (b,k,s) states in Sigma_c.

 calculation status (     32 to be completed):
 Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
 cpu_time =       0.0, wall_time =       0.0

 k =    0.250   0.750   0.250
 Band     E0 <VxcDFT>   SigX SigC(E0)      Z dSigC/dE  Sig(E)    E-E0       E
    4   9.060 -13.805 -16.189   3.661   0.843  -0.187 -12.728   1.077  10.137
    4   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
    5  14.825 -11.453  -5.994  -3.095   0.863  -0.159  -9.414   2.039  16.864
    5   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

 E^0_gap          5.765
 E^GW_gap         6.727
 DeltaE^GW_gap    0.962

- Creating HDf5 file with MPI-IO support: t01o_DS5_SIGRES.nc

================================================================================
== DATASET  6 ==================================================================
-   mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)


--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
    xgScalapack in auto mode
...

 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.

 mkfilename : getscr/=0, take file _SCR from output of DATASET   2.


 getdim_nloc : deduce lmnmax  =   4, lnmax  =   2,
                      lmnmaxso=   4, lnmaxso=   2.
 Exchange-correlation functional for the present dataset will be:
  LDA: new Teter (4/93) with spin-polarized option - ixc=1
 Citation for XC functional:
  S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)

 SIGMA: Calculation of the GW corrections 

 Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
 Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc =  8

 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees

 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  15  15  15
         ecut(hartree)=      6.000   => boxcut(ratio)=   2.29315

 getcut : COMMENT -
  Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
  is sufficient for exact treatment of convolution.
  Such a large boxcut is a waste : you could raise ecut
  e.g. ecut=    7.887793 Hartrees makes boxcut=2


 ==== Dense FFT mesh used for densities and potentials ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
 wfk_read_eigenvalues completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME

 Sorting g-vecs for an output of states on an unique "big" PW basis.
 Since the number of g's to be written on file
 was 0 or too large, it has been set to the max. value.,
 computed from the union of the sets of G vectors for the different k-points.
 Number of G-vectors is:   153

  ==== Info on the Cryst% object ====
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  3.9350000  3.9350000  G(1)= -0.1270648  0.1270648  0.1270648
 R(2)=  3.9350000  0.0000000  3.9350000  G(2)=  0.1270648 -0.1270648  0.1270648
 R(3)=  3.9350000  3.9350000  0.0000000  G(3)=  0.1270648  0.1270648 -0.1270648
 Unit cell volume ucvol=  1.2186085E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 Time-reversal symmetry is present
 Reduced atomic positions [iatom, xred, symbol]:
    1)    0.0000000  0.0000000  0.0000000   C
    2)    0.2500000  0.2500000  0.2500000  Si
 ==== K-mesh for the wavefunctions ====
 Number of points in the irreducible wedge :     2
 Reduced coordinates and weights : 

     1)    -2.50000000E-01  5.00000000E-01  0.00000000E+00       0.75000
     2)    -2.50000000E-01  0.00000000E+00  0.00000000E+00       0.25000

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Top of valence:  11.4157 (eV)
 Bottom of conduction:  14.8247 (eV)
 Fermi level: 13.1202  (eV) 



 Indirect band gap semiconductor
 Fundamental gap:     3.409 (eV)
   VBM:    11.416 (eV) at k: [-2.5000E-01,  0.0000E+00,  0.0000E+00]
   CBM:    14.825 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]
 Direct gap:         5.765 (eV) at k: [-2.5000E-01,  5.0000E-01,  0.0000E+00]



  >>>> For spin  1
   Minimum direct gap =   5.7646 [eV], located at k-point      :  -0.2500  0.5000  0.0000
   Fundamental gap    =   3.4090 [eV], Top of valence bands at :  -0.2500  0.0000  0.0000
                                       Bottom of conduction at :  -0.2500  0.5000  0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
 SCR file: epsilon^-1 , calculated using inclvkb = 2
 TESTPARTICLE RPA
 Identifier                       4
 Kxc kernel                       0
 Treatment of q-->0 limit         2
 headform                        80
 fform                         1004
 gwcalctyp                        0
 Number of components             1       1
 Number of q-points               6
 Number of q-directions           1
 Number of frequencies            2
 Number of bands used            10
 Dimension of matrix             27
 Number of planewaves used       65
 Spectral method                  0
 Test_type                        0
 Time-ordering                    1
 Scissor Energy                 0.000000E+00
 Spectral smearing              1.000000E-01
 Complex Imaginary Shift        3.674933E-03
 The header contains additional records.
 ==== Q-mesh for screening function ====
 Number of points in the irreducible wedge :     6
 Reduced coordinates and weights : 

     1)     0.00000000E+00  0.00000000E+00  0.00000000E+00       0.03125
     2)    -2.50000000E-01  0.00000000E+00  2.50000000E-01       0.37500
     3)     0.00000000E+00  5.00000000E-01  5.00000000E-01       0.09375
     4)     5.00000000E-01  0.00000000E+00  0.00000000E+00       0.12500
     5)    -2.50000000E-01  0.00000000E+00 -2.50000000E-01       0.18750
     6)    -2.50000000E-01  5.00000000E-01  2.50000000E-01       0.18750

 Together with 24 symmetry operations and time-reversal symmetry 
 yields    32 points in the full Brillouin Zone.


 Optimal value for ng0sh [1, 2, 1]

 vcoul_init : cutoff-mode = CRYSTAL
 q-points for optical limit:   1
     1)      0.000010    0.000020    0.000030

 setmesh: npwwfn        =       65; Max (m1,m2,m3)   =      2     2     2
          npweps/npwsigx=       27; Max (mm1,mm2,mm3)=      3     4     3
          mG0 added     =   1  2  1
 calculated ecutwfn          =   5.099 [Ha] 
 calculated ecutsigx/ecuteps =   2.550 [Ha]
 using method =  2 with ecuteff =  14.860 [Ha]
 Finding a FFT mesh compatible with all the symmetries
 setmesh: divisor mesh 1 1 1
 setmesh: FFT mesh size selected  =     9x    9x    9
          total number of points  =          729


 ==== FFT mesh for oscillator strengths used for Sigma_c ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16

 ==== FFT mesh for oscillator strengths used for Sigma_x ====
  FFT mesh divisions ........................     9    9    9
  Augmented FFT divisions ...................     9    9    9
  FFT algorithm .............................   512
  FFT cache size ............................    16
 Memory needed for Fourier components u(G):      0.0 [Mb] <<< MEM
 Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
 Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
 Memory needed for real-space u(r):      0.1 [Mb] <<< MEM
 Memory needed for bks_tab:      0.0 [Mb] <<< MEM
 wfd_init completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 wfd_read_wfk: Reading file: t01o_DS1_WFK  with iomode: IO_MODE_MPI , master_only: yes
 If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...` 
  to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
 About to read: 7  (b, k, s) states in total.
 For spin: 1 , will read: 2  k-points.
 Reading k-point [1/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 Reading k-point [2/2] spin [1/1] completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME
 WFK IO completed. cpu:  0.00 [s] , wall:  0.00 [s] <<< TIME


 planewave contribution to nelect:    8.0000
 Number of electrons calculated from density =    8.0000; Expected =    8.0000
 average of density, n =  0.065649
 r_s =    1.5378
 omega_plasma =   24.7154 [eV]

 Total charge density [el/Bohr^3]
      Maximum=    2.1987E-01  at reduced coord.    0.0667    0.0667    0.8000
      Minimum=    1.1050E-02  at reduced coord.    0.2667    0.2667    0.2000
   Integrated=    8.0000E+00
 calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
 For spin  1 Min density rhor =     0.110504E-01
 E_xc[n_val]  =  -3.0696 [Ha]. <V_xc[n_val]> =  -0.4305 [Ha].
 Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.

 === Matrix elements in the KS basis set [eV] ===
 kpt= ( -2.50000000E-01  5.00000000E-01  0.00000000E+00) spin= 1:
  ib vxc       vxcval    vhartree
   4 -14.32103 -13.80525   6.37050
   5 -11.97096 -11.45292  -1.08018
 Er%ID:            4 , Er%Hscr%ID:            4
 Memory needed for Er%epsm1 =          0.1 [Mb] <<< MEM
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        23.681 40.525 42.115 42.115 43.582 51.388 51.388 54.499 55.035 56.390
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  23.68084860
            omega twiddle min location =     1
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        27.279 34.113 35.617 41.171 44.515 46.198 48.409 56.751 58.077 58.665
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  27.27892510
            omega twiddle min location =     1
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        29.681 32.781 36.178 36.178 40.070 48.419 56.393 59.508 59.508 69.245
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  29.68118187
            omega twiddle min location =     1
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        29.228 32.031 41.781 41.781 43.322 48.100 48.259 48.259 60.784 60.784
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  29.22769843
            omega twiddle min location =     1
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        26.263 38.062 38.062 38.447 40.916 49.062 53.192 53.192 56.958 61.417
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  26.26263648
            omega twiddle min location =     1
--------------------------------------------------------------------------------
 plasmon energies vs q vector shown for lowest 10 bands
        29.080 32.483 34.250 35.411 46.119 49.111 50.710 52.832 62.841 68.668
--------------------------------------------------------------------------------

 cppm4par : omega twiddle minval [eV]  =  29.07971801
            omega twiddle min location =     1
 SIGMA fundamental parameters:
 PLASMON POLE MODEL  4
 number of plane-waves for SigmaX                   27
 number of plane-waves for SigmaC and W             27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of independent spin polarizations            1
 number of spinorial components                      1
 number of k-points in IBZ                           2
 number of q-points in IBZ                           6
 number of symmetry operations                      24
 number of k-points in BZ                           32
 number of q-points in BZ                           32
 number of frequencies for dSigma/dE                 5
 frequency step for dSigma/dE [eV]                0.25
 number of omega for Sigma on real axis              0
 max omega for Sigma on real axis  [eV]           0.00
 zcut for avoiding poles [eV]                     0.10

 EPSILON^-1 parameters (SCR file):
 dimension of the eps^-1 matrix on file             27
 dimension of the eps^-1 matrix used                27
 number of plane-waves for wavefunctions            65
 number of bands                                    10
 number of q-points in IBZ                           6
 number of frequencies                               2
 number of real frequencies                          1
 number of imag frequencies                          1

 matrix elements of self-energy operator (all in [eV])

 Perturbative Calculation
 ==== Info on the Wfd% object ====
  Number of irreducible k-points ........ 2
  Number of spinorial components ........ 1
  Number of spin-density components ..... 1
  Number of spin polarizations .......... 1
  Plane wave cutoff energy ..............   6.0
  Max number of G-vectors ............... 89
  Total number of FFT points ............ 3375
  Number of FFT points treated by me .... 3375


 ==== FFT mesh for wavefunctions ====
  FFT mesh divisions ........................    15   15   15
  Augmented FFT divisions ...................    15   15   15
  FFT algorithm .............................   512
  FFT cache size ............................    16

 Total number of (b,k,s) states stored by this rank: 7
 Memory allocated for Fourier components u(G):      0.0 [Mb] <<< MEM
 Memory allocated for real-space u(r):      0.2 [Mb] <<< MEM
 Memory needed for wfd%s datastructure:      0.0 [Mb] <<< MEM
 Memory needed for wfd%s(0)%k datastructure:      0.0 [Mb] <<< MEM
 Memory allocated for Kdata array:      0.0 [Mb] <<< MEM

 standard GW with PPM
 Perturbative Calculation

 Calculating <nk|Sigma_x|nk> at k=    0.250   0.750   0.250
 bands from   4 to   5

 Will sum   38 (b, k, s) occupied states in Sigma_x.

 calc_sigx_me: calculation status (32 to be completed):
 calc_sigx_me: ik_bz    1/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    2/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    3/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    4/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    5/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    6/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    7/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    8/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz    9/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   10/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   11/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   12/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   13/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   14/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   15/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   16/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   17/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   18/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   19/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   20/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   21/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   22/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   23/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   24/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   25/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   26/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   27/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   28/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   29/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   30/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   31/  32 done by mpi-rank:   0
 calc_sigx_me: ik_bz   32/  32 done by mpi-rank:   0
 cpu_time =       0.0, wall_time =       0.0

 Calculating <nk|Sigma_c(omega)|nk> at k =    0.250   0.750   0.250
 bands n = from   4 to   5

 standard GW with PPM
 Will sum 84 (b,k,s) states in Sigma_c.

 calculation status (     32 to be completed):
 Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
 Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
 cpu_time =       0.0, wall_time =       0.0

 k =    0.250   0.750   0.250
 Band     E0 <VxcDFT>   SigX SigC(E0)      Z dSigC/dE  Sig(E)    E-E0       E
    4   9.060 -13.805 -16.189   3.674   0.833  -0.200 -12.730   1.076  10.136
    4   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000  -0.000
    5  14.825 -11.453  -5.994  -3.079   0.855  -0.170  -9.418   2.034  16.859
    5   0.000   0.000   0.000  -0.000   0.000   0.000  -0.000  -0.000  -0.000

 E^0_gap          5.765
 E^GW_gap         6.724
 DeltaE^GW_gap    0.959

- Creating HDf5 file with MPI-IO support: t01o_DS6_SIGRES.nc

== END DATASET(S) ==============================================================
================================================================================

 -outvars: echo values of variables after computation  --------

 These variables are accessible in NetCDF format (t01o_OUT.nc)

            acell      7.8700000000E+00  7.8700000000E+00  7.8700000000E+00 Bohr
              amu      1.20110000E+01  2.80855000E+01
             bdgw3          4       5
             bdgw4          4       5
             bdgw5          4       5
             bdgw6          4       5
             ecut      6.00000000E+00 Hartree
          ecuteps1     0.00000000E+00 Hartree
          ecuteps2     2.54958951E+00 Hartree
          ecuteps3     0.00000000E+00 Hartree
          ecuteps4     0.00000000E+00 Hartree
          ecuteps5     0.00000000E+00 Hartree
          ecuteps6     0.00000000E+00 Hartree
         ecutsigx1     0.00000000E+00 Hartree
         ecutsigx2     0.00000000E+00 Hartree
         ecutsigx3     2.54958951E+00 Hartree
         ecutsigx4     2.54958951E+00 Hartree
         ecutsigx5     2.54958951E+00 Hartree
         ecutsigx6     2.54958951E+00 Hartree
          ecutwfn      6.00000000E+00 Hartree
           enunit           2
           etotal1    -1.0129534884E+01
           etotal2     0.0000000000E+00
           etotal3     0.0000000000E+00
           etotal4     0.0000000000E+00
           etotal5     0.0000000000E+00
           etotal6     0.0000000000E+00
            fcart1     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
            fcart2     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
            fcart3     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
            fcart4     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
            fcart5     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
            fcart6     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
-          fftalg         512
           getscr1          0
           getscr2          0
           getscr3         -1
           getscr4         -2
           getscr5         -3
           getscr6         -4
           getwfk1          0
           getwfk2         -1
           getwfk3         -2
           getwfk4         -3
           getwfk5         -4
           getwfk6         -5
      gw_icutcoul1          6
      gw_icutcoul2          6
      gw_icutcoul3          3
      gw_icutcoul4          3
      gw_icutcoul5          3
      gw_icutcoul6          3
           jdtset        1    2    3    4    5    6
              kpt     -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
            kptgw3     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw4     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw5     2.50000000E-01  7.50000000E-01  2.50000000E-01
            kptgw6     2.50000000E-01  7.50000000E-01  2.50000000E-01
         kptrlatt        2   -2    2     -2    2    2     -2   -2    2
          kptrlen      1.57400000E+01
P           mkmem           1
            natom           2
            nband1         15
            nband2         10
            nband3         10
            nband4         10
            nband5         10
            nband6         10
           nbdbuf1          5
           nbdbuf2          0
           nbdbuf3          0
           nbdbuf4          0
           nbdbuf5          0
           nbdbuf6          0
           ndtset           6
            ngfft          15      15      15
             nkpt           2
           nkptgw1          0
           nkptgw2          0
           nkptgw3          1
           nkptgw4          1
           nkptgw5          1
           nkptgw6          1
            nline1          3
            nline2          4
            nline3          4
            nline4          4
            nline5          4
            nline6          4
        nomegasrd           5
           npweps1          0
           npweps2         27
           npweps3          0
           npweps4          0
           npweps5          0
           npweps6          0
          npwsigx1          0
          npwsigx2          0
          npwsigx3         27
          npwsigx4         27
          npwsigx5         27
          npwsigx6         27
           npwwfn1          0
           npwwfn2         65
           npwwfn3         65
           npwwfn4         65
           npwwfn5         65
           npwwfn6         65
            nstep1         20
            nstep2         30
            nstep3         30
            nstep4         30
            nstep5         30
            nstep6         30
             nsym          24
           ntypat           2
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ3     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ4     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ5     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
              occ6     2.000000  2.000000  2.000000  2.000000  0.000000  0.000000
                       0.000000  0.000000  0.000000  0.000000
      omegasrdmax      1.83746627E-02 Hartree
        optdriver1          0
        optdriver2          3
        optdriver3          4
        optdriver4          4
        optdriver5          4
        optdriver6          4
           ppmfrq1     0.00000000E+00 Hartree
           ppmfrq2     5.00003971E-01 Hartree
           ppmfrq3     0.00000000E+00 Hartree
           ppmfrq4     0.00000000E+00 Hartree
           ppmfrq5     0.00000000E+00 Hartree
           ppmfrq6     0.00000000E+00 Hartree
          ppmodel1          1
          ppmodel2          1
          ppmodel3          1
          ppmodel4          2
          ppmodel5          3
          ppmodel6          4
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         216
           strten1    -1.2194339464E-05 -1.2194339464E-05 -1.2194339464E-05
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten2     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten3     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten4     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten5     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten6     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           symrel      1  0  0   0  1  0   0  0  1       0 -1  1   0 -1  0   1 -1  0
                      -1  0  0  -1  0  1  -1  1  0       0  1 -1   1  0 -1   0  0 -1
                      -1  0  0  -1  1  0  -1  0  1       0 -1  1   1 -1  0   0 -1  0
                       1  0  0   0  0  1   0  1  0       0  1 -1   0  0 -1   1  0 -1
                      -1  0  1  -1  1  0  -1  0  0       0 -1  0   1 -1  0   0 -1  1
                       1  0 -1   0  0 -1   0  1 -1       0  1  0   0  0  1   1  0  0
                       1  0 -1   0  1 -1   0  0 -1       0 -1  0   0 -1  1   1 -1  0
                      -1  0  1  -1  0  0  -1  1  0       0  1  0   1  0  0   0  0  1
                       0  0 -1   0  1 -1   1  0 -1       1 -1  0   0 -1  1   0 -1  0
                       0  0  1   1  0  0   0  1  0      -1  1  0  -1  0  0  -1  0  1
                       0  0  1   0  1  0   1  0  0       1 -1  0   0 -1  0   0 -1  1
                       0  0 -1   1  0 -1   0  1 -1      -1  1  0  -1  0  1  -1  0  0
         symsigma        0
           tolwfr1     1.00000000E-16
           tolwfr2     0.00000000E+00
           tolwfr3     0.00000000E+00
           tolwfr4     0.00000000E+00
           tolwfr5     0.00000000E+00
           tolwfr6     0.00000000E+00
            typat      1  2
              wtk        0.75000    0.25000
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.0411561579E+00  1.0411561579E+00  1.0411561579E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.9675000000E+00  1.9675000000E+00  1.9675000000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl        6.00000   14.00000

================================================================================


================================================================================

 Suggested references for the acknowledgment of ABINIT usage.

 The users of ABINIT have little formal obligations with respect to the ABINIT group
 (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
 However, it is common practice in the scientific literature,
 to acknowledge the efforts of people that have made the research possible.
 In this spirit, please find below suggested citations of work written by ABINIT developers,
 corresponding to implementations inside of ABINIT that you have used in the present run.
 Note also that it will be of great value to readers of publications presenting these results,
 to read papers enabling them to understand the theoretical formalism and details
 of the ABINIT implementation.
 For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin, 
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys 
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
 Proc.   0 individual time (sec): cpu=          2.0  wall=         11.6

 Calculation completed.
.Delivered   0 WARNINGs and   7 COMMENTs to log file.

--- !FinalSummary
program: abinit
version: 9.6.2
start_datetime: Tue Feb 08 12:41:57 2022
end_datetime: Tue Feb 08 12:42:08 2022
overall_cpu_time:          36.2
overall_wall_time:          46.0
exit_requested_by_user: no 
timelimit: 0
pseudos: 
    C   : 6bf6ca08f4034aa8d90b0c6757b7adb1
    Si  : 3916b143991b1cfa1542b130be320e5e
usepaw: 0
mpi_procs: 4
omp_threads: 1
num_warnings: 0
num_comments: 7
...
Test completed, rc=0,  overall_wall_time: 46.0