Benchmark / test report
Container name: Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif
test script
#!/bin/bash
#SBATCH -N2
#SBATCH --ntasks-per-node=2
#SBATCH -J plcr-abinit-cpu-test
PLCR=${PLCR:-/net/ascratch/groups/plggsoftware/containers}
CONT=${1:-Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif}
echo "PLCR test: $SLURM_JOB_NAME"
echo "PLCR jobid: $SLURM_JOBID"
echo "PLCR path: $PLCR"
echo "Test performed on: "`date`
echo "Testing container: $CONT"
SHA=`dd bs=1M if=$PLCR/images/$CONT 2>/dev/null | sha256sum | cut -d' ' -f1`
echo "Container checksum: $SHA"
export I_MPI_PMI_LIBRARY=$PLCR/local/pmi2/libpmi2.so
cd $TMPDIR
wget --quiet https://www.abinit.org/sites/default/files/packages/abinit-9.6.2.tar.gz
tar xf abinit-9.6.2.tar.gz
export ABI_PSPDIR=/host_pwd/abinit-9.6.2/tests/Psps_for_tests
srun --mpi=pmi2 --cpu-bind=cores singularity -s run -B $I_MPI_PMI_LIBRARY -B $PWD:/host_pwd --pwd /host_pwd $PLCR/images/$CONT abinit abinit-9.6.2/tests/v67mbpt/Input/t01.abi
RC=$?
grep 'overall_wall_time:' $SLURM_SUBMIT_DIR/slurm-${SLURM_JOB_ID}.out > result
echo "Test completed, rc=$RC, " $(cat result)
test results
PLCR test: plcr-abinit-cpu-test
PLCR jobid: 206776
PLCR path: /net/ascratch/groups/plggsoftware/containers
Test performed on: Tue Feb 8 12:41:27 CET 2022
Testing container: Singularity.ABINIT-9.6.2-intel-2021b.localimage.sif
Container checksum: 63726c211760a7dc41cee7e5d30ac48f8f1c61c9c78337b56e194b35b4e3ebf1
ABINIT 9.6.2
ABI_PSPDIR found in environment, with value /host_pwd/abinit-9.6.2/tests/Psps_for_tests
-instrng: 112 lines of input have been read from file abinit-9.6.2/tests/v67mbpt/Input/t01.abi
.Version 9.6.2 of ABINIT
.(MPI version, prepared for a x86_64_linux_intel2021.4 computer)
.Copyright (C) 1998-2021 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Tue 8 Feb 2022.
- ( at 12h41 )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=== Build Information ===
Version : 9.6.2
Build target : x86_64_linux_intel2021.4
Build date : 20220207
=== Compiler Suite ===
C compiler : intel2021.4
C++ compiler : gnu2021.4
Fortran compiler : intel2021.4
CFLAGS : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPIC -mt_mpi
CXXFLAGS : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPIC -mt_mpi
FCFLAGS : -O2 -xHost -ftz -fp-speculation=safe -fp-model source -fopenmp -fPI ...
FC_LDFLAGS : -static-intel -static-libgcc
=== Optimizations ===
Debug level : basic
Optimization level : standard
Architecture : unknown_unknown
=== Multicore ===
Parallel build : yes
Parallel I/O :
openMP support : yes
GPU support :
=== Connectors / Fallbacks ===
LINALG flavor : mkl
FFT flavor : dfti
HDF5 : yes
NetCDF : yes
NetCDF Fortran : yes
LibXC : yes
Wannier90 : yes
=== Experimental features ===
Exports :
GW double-precision : yes
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Default optimizations:
--- None ---
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
CPP options activated during the build:
CC_INTEL CXX_GNU FC_INTEL
HAVE_DFTI HAVE_FC_ALLOCATABLE_DT... HAVE_FC_ASYNC
HAVE_FC_COMMAND_ARGUMENT HAVE_FC_COMMAND_LINE HAVE_FC_CONTIGUOUS
HAVE_FC_CPUTIME HAVE_FC_ETIME HAVE_FC_EXIT
HAVE_FC_FLUSH HAVE_FC_GAMMA HAVE_FC_GETENV
HAVE_FC_GETPID HAVE_FC_IEEE_ARITHMETIC HAVE_FC_IEEE_EXCEPTIONS
HAVE_FC_IOMSG HAVE_FC_ISO_C_BINDING HAVE_FC_ISO_FORTRAN_2008
HAVE_FC_LONG_LINES HAVE_FC_MOVE_ALLOC HAVE_FC_ON_THE_FLY_SHAPE
HAVE_FC_PRIVATE HAVE_FC_PROTECTED HAVE_FC_SHIFTLR
HAVE_FC_STREAM_IO HAVE_FC_SYSTEM HAVE_GW_DPC
HAVE_HDF5 HAVE_HDF5_MPI HAVE_LIBPAW_ABINIT
HAVE_LIBTETRA_ABINIT HAVE_LIBXC HAVE_LINALG_AXPBY
HAVE_LINALG_GEMM3M HAVE_LINALG_GEMMT HAVE_LINALG_MKL_IMATCOPY
HAVE_LINALG_MKL_OMATADD HAVE_LINALG_MKL_OMATCOPY HAVE_LINALG_MKL_THREADS
HAVE_LINALG_SCALAPACK HAVE_MPI HAVE_MPI2
HAVE_MPI_IALLGATHER HAVE_MPI_IALLREDUCE HAVE_MPI_IALLTOALL
HAVE_MPI_IALLTOALLV HAVE_MPI_IBCAST HAVE_MPI_IGATHERV
HAVE_MPI_INTEGER16 HAVE_MPI_IO HAVE_MPI_TYPE_CREATE_S...
HAVE_NETCDF HAVE_NETCDF_FORTRAN HAVE_NETCDF_FORTRAN_MPI
HAVE_NETCDF_MPI HAVE_OMP_COLLAPSE HAVE_OPENMP
HAVE_OS_LINUX HAVE_TIMER_ABINIT HAVE_WANNIER90
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- input file -> abinit-9.6.2/tests/v67mbpt/Input/t01.abi
- output file -> abinit-9.6.2/tests/v67mbpt/Input/t01.abo
- root for input files -> t01i
- root for output files -> t01o
Netcdf library supports MPI-IO
ABI_PSPDIR found in environment, with value /host_pwd/abinit-9.6.2/tests/Psps_for_tests
-instrng: 112 lines of input have been read from file abinit-9.6.2/tests/v67mbpt/Input/t01.abi
For atom type 1, psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
For atom type 2, psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
read the values zionpsp= 4.0 , pspcod= 1 , lmax= 1
read the values zionpsp= 4.0 , pspcod= 1 , lmax= 2
inpspheads: deduce mpsang = 3, n1xccc = 2501.
=======================================================
invars1m : enter jdtset= 1
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
--- !COMMENT
src_file: m_ingeo.F90
src_line: 900
message: |
The tolerance on symmetries = 1.000E-05 is bigger than 1.0e-8.
In order to avoid spurious effects, the atomic coordinates have been
symmetrized before storing them in the dataset internal variable.
So, do not be surprised by the fact that your input variables (xcart, xred, ...)
do not correspond exactly to the ones echoed by ABINIT, the latter being used to do the calculations.
This is not a problem per se.
Still, in order to avoid this symmetrization (e.g. for specific debugging/development), decrease tolsym to 1.0e-8 or lower,
or (much preferred) use input primitive vectors that are accurate to better than 1.0e-8.
This message will only be printed once, even if there are other datasets where tolsym is bigger than 1.0e-8.
...
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
=======================================================
invars1m : enter jdtset= 2
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
=======================================================
invars1m : enter jdtset= 3
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
=======================================================
invars1m : enter jdtset= 4
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
=======================================================
invars1m : enter jdtset= 5
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
=======================================================
invars1m : enter jdtset= 6
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 216 F-4 3 m (=Td^2)
symspgr: optical characteristics = isotropic
--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
One of the three variables ecutsigx, npwsigx, or nshsigx
must be non-null. Returning.
...
--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
One of the three variables ecuteps, npweps, or nsheps
must be non-null. Returning.
...
--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
One of the three variables ecuteps, npweps, or nsheps
must be non-null. Returning.
...
--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
One of the three variables ecuteps, npweps, or nsheps
must be non-null. Returning.
...
--- !COMMENT
src_file: m_gsphere.F90
src_line: 1644
message: |
One of the three variables ecuteps, npweps, or nsheps
must be non-null. Returning.
...
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
--- !WARNING
src_file: m_mpi_setup.F90
src_line: 732
message: |
Your number of spins*k-points (=2) will not distribute correctly
with the current number of processors (=4).
You will leave some empty.
YOU ARE STRONGLY ADVISED TO ACTIVATE AUTOMATIC PARALLELIZATION!
PUT "AUTOPARAL=1" IN THE INPUT FILE.
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
--- !WARNING
src_file: m_mpinfo.F90
src_line: 2495
message: |
nproc_spkpt= 4 >= nkpt= 2* nsppol= 1
The number of processors is larger than nkpt*nsppol. This is a waste. (Ignore this warning if this is not a GS run)
...
For input ecut= 6.000000E+00 best grid ngfft= 15 15 15
max ecut= 7.887793E+00
==== FFT mesh ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
getmpw: optimal value of mpw= 89
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 15 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.868 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.043 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
memana : allocated an array of 0.414 Mbytes, for testing purposes.
memana: allocated 1.868Mbytes, for testing purposes.
The job will continue.
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.856 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.856 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
DATASET 4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.856 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
DATASET 5 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.856 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
DATASET 6 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 89 nfft = 3375 nkpt = 2
================================================================================
P This job should need less than 1.856 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.4140 MBytes.
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 1
-
-outvars: echo values of preprocessed input variables --------
These variables are accessible in NetCDF format (t01o_OUT.nc)
acell 7.8700000000E+00 7.8700000000E+00 7.8700000000E+00 Bohr
amu 1.20110000E+01 2.80855000E+01
bdgw3 4 5
bdgw4 4 5
bdgw5 4 5
bdgw6 4 5
ecut 6.00000000E+00 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 2.54958951E+00 Hartree
ecuteps3 0.00000000E+00 Hartree
ecuteps4 0.00000000E+00 Hartree
ecuteps5 0.00000000E+00 Hartree
ecuteps6 0.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 2.54958951E+00 Hartree
ecutsigx4 2.54958951E+00 Hartree
ecutsigx5 2.54958951E+00 Hartree
ecutsigx6 2.54958951E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
enunit 2
- fftalg 512
getscr1 0
getscr2 0
getscr3 -1
getscr4 -2
getscr5 -3
getscr6 -4
getwfk1 0
getwfk2 -1
getwfk3 -2
getwfk4 -3
getwfk5 -4
getwfk6 -5
gw_icutcoul1 6
gw_icutcoul2 6
gw_icutcoul3 3
gw_icutcoul4 3
gw_icutcoul5 3
gw_icutcoul6 3
jdtset 1 2 3 4 5 6
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptgw3 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw4 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw5 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw6 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.57400000E+01
P mkmem 1
natom 2
nband1 15
nband2 10
nband3 10
nband4 10
nband5 10
nband6 10
nbdbuf1 5
nbdbuf2 0
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
ndtset 6
ngfft 15 15 15
nkpt 2
nkptgw1 0
nkptgw2 0
nkptgw3 1
nkptgw4 1
nkptgw5 1
nkptgw6 1
nline1 3
nline2 4
nline3 4
nline4 4
nline5 4
nline6 4
nomegasrd 5
npweps1 0
npweps2 27
npweps3 0
npweps4 0
npweps5 0
npweps6 0
npwsigx1 0
npwsigx2 0
npwsigx3 27
npwsigx4 27
npwsigx5 27
npwsigx6 27
npwwfn1 0
npwwfn2 65
npwwfn3 65
npwwfn4 65
npwwfn5 65
npwwfn6 65
nstep1 20
nstep2 30
nstep3 30
nstep4 30
nstep5 30
nstep6 30
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
occ2 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
omegasrdmax 1.83746627E-02 Hartree
optdriver1 0
optdriver2 3
optdriver3 4
optdriver4 4
optdriver5 4
optdriver6 4
ppmfrq1 0.00000000E+00 Hartree
ppmfrq2 5.00003971E-01 Hartree
ppmfrq3 0.00000000E+00 Hartree
ppmfrq4 0.00000000E+00 Hartree
ppmfrq5 0.00000000E+00 Hartree
ppmfrq6 0.00000000E+00 Hartree
ppmodel1 1
ppmodel2 1
ppmodel3 1
ppmodel4 2
ppmodel5 3
ppmodel6 4
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
symsigma 0
tolwfr1 1.00000000E-16
tolwfr2 0.00000000E+00
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
typat 1 2
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0411561579E+00 1.0411561579E+00 1.0411561579E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9675000000E+00 1.9675000000E+00 1.9675000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
DATA TYPE INFORMATION:
REAL: Data type name: REAL(DP)
Kind value: 8
Precision: 15
Smallest nonnegligible quantity relative to 1: 0.22204460E-015
Smallest positive number: 0.22250739E-307
Largest representable number: 0.17976931E+309
INTEGER: Data type name: INTEGER(default)
Kind value: 4
Bit size: 32
Largest representable number: 2147483647
LOGICAL: Data type name: LOGICAL
Kind value: 4
CHARACTER: Data type name: CHARACTER Kind value: 1
==== OpenMP parallelism is ON ====
- Max_threads: 1
- Num_threads: 1
- Num_procs: 1
- Dynamic: F
==== Using MPI-2 specifications ====
MPI-IO support is ON
xmpi_tag_ub ................ 1048575
xmpi_bsize_ch .............. 1
xmpi_bsize_int ............. 4
xmpi_bsize_sp .............. 4
xmpi_bsize_dp .............. 8
xmpi_bsize_spc ............. 8
xmpi_bsize_dpc ............. 16
xmpio_bsize_frm ............ 4
xmpi_address_kind .......... 8
xmpi_offset_kind ........... 8
MPI_WTICK .................. 3.448300646527281E-010
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
- --> not optimal distribution: autoparal keyword recommended in input file <--
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
- pspini: atom type 1 psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
- pspatm: opening atomic psp file /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/6c.pspnc
- Troullier-Martins psp for element C Thu Oct 27 17:29:33 EDT 1994
- 6.00000 4.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 10.372 24.987 1 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 15.431 21.987 0 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.83985002509544 0.99012430797080 0.51184907750884 rchrg,fchrg,qchrg
pspatm : epsatm= 0.92590353
--- l ekb(1:nproj) -->
0 4.921466
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
- pspatm: opening atomic psp file /host_pwd/abinit-9.6.2/tests/Psps_for_tests/PseudosTM_pwteter/14si.pspnc
- Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994
- 14.00000 4.00000 940714 znucl, zion, pspdat
1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg
pspatm : epsatm= 1.43386982
--- l ekb(1:nproj) -->
0 3.287949
1 1.849886
pspatm: atomic psp has been read and splines computed
1.88781868E+01 ecore*ucvol(ha*bohr**3)
==== Info on pseudopotentials ====
Norm-conserving pseudopotentials
Number of pseudopotentials .. 2
Number of types of atoms .. 2
Scalar calculation (no spin-orbit term)
Nonlocal part applied using Legendre polynomials
Max number of non-local projectors over l and type 1
Highest angular momentum +1 ....... 3
Max number of (l,n) components .. 2
Max number of (l,m,n) components .. 2
Pseudo-Core Charge Info:
Number of radial points for pseudo-core charge .. 2501
XC core-correction treatment (optnlxccc) ........ 1
Radius for pseudo-core charge for each type .....
- Atom type 1 has pseudo-core radius .. 2.5196
- Atom type 2 has pseudo-core radius .. 5.4188
Info on the Q-grid used for form factors in spline form:
Number of q-points for radial functions ffspl .. 3001
Number of q-points for vlspl ................... 3001
vloc is computed in Reciprocal Space
model core charge treated in real-space
XC functional for type 1 is 1
Pseudo valence available: no
XC functional for type 2 is 1
Pseudo valence available: no
symatm: atom number 1 is reached starting at atom
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
symatm: atom number 2 is reached starting at atom
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wfconv: 15 bands initialized randomly with npw= 89, for ikpt= 1
_setup2: Arith. and geom. avg. npw (full set) are 87.500 87.461
initro: for itypat= 1, take decay length= 0.7000,
initro: indeed, coreel= 2.0000, nval= 4 and densty= 0.0000E+00.
initro: for itypat= 2, take decay length= 1.1000,
initro: indeed, coreel= 10.0000, nval= 4 and densty= 0.0000E+00.
================================================================================
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
ITER STEP NUMBER 1
Max number of non-self-consistent loops: 2
Total charge density [el/Bohr^3]
Maximum= 2.3016E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.0283E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
ETOT 1 -10.123997816113 -1.012E+01 7.316E-04 3.643E+00
scprqt: <Vxc>= -4.4885835E-01 hartree
Simple mixing update:
residual square of the potential: 1.94234864899511
{SCF_istep: 1 , Vnl|psi>: 120 , wall_time: ' 0.33 [s] '} <<< TIME
ITER STEP NUMBER 2
Max number of non-self-consistent loops: 2
Total charge density [el/Bohr^3]
Maximum= 2.1648E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1237E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 2 -10.129036644536 -5.039E-03 5.963E-09 2.518E-01
scprqt: <Vxc>= -4.5169199E-01 hartree
Pulay update with 1 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 0.846 0.154
{SCF_istep: 2 , Vnl|psi>: 120 , wall_time: ' 0.03 [s] '} <<< TIME
ITER STEP NUMBER 3
Total charge density [el/Bohr^3]
Maximum= 2.2051E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.0992E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 3 -10.129514527225 -4.779E-04 4.496E-05 1.239E-02
scprqt: <Vxc>= -4.5118483E-01 hartree
Pulay update with 2 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 0.932 0.100 -0.318E-01
{SCF_istep: 3 , Vnl|psi>: 60 , wall_time: ' 0.02 [s] '} <<< TIME
ITER STEP NUMBER 4
Total charge density [el/Bohr^3]
Maximum= 2.1988E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 4 -10.129534869789 -2.034E-05 1.344E-06 2.152E-05
scprqt: <Vxc>= -4.5129829E-01 hartree
Pulay update with 3 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.12 -0.110 -0.121E-01 0.210E-02
{SCF_istep: 4 , Vnl|psi>: 60 , wall_time: ' 0.01 [s] '} <<< TIME
ITER STEP NUMBER 5
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1051E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 5 -10.129534883945 -1.416E-08 2.753E-09 9.798E-08
scprqt: <Vxc>= -4.5130220E-01 hartree
Pulay update with 4 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.13 -0.145 0.114E-01 0.118E-02 -0.236E-03
{SCF_istep: 5 , Vnl|psi>: 60 , wall_time: ' 0.01 [s] '} <<< TIME
ITER STEP NUMBER 6
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 6 -10.129534884009 -6.347E-11 1.351E-11 3.505E-10
scprqt: <Vxc>= -4.5130248E-01 hartree
Pulay update with 5 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.09 -0.105 0.115E-01 -0.779E-03 -0.110E-03
{SCF_istep: 6 , Vnl|psi>: 60 , wall_time: ' 0.01 [s] '} <<< TIME
ITER STEP NUMBER 7
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 7 -10.129534884009 -5.382E-13 4.160E-14 1.604E-12
scprqt: <Vxc>= -4.5130246E-01 hartree
Pulay update with 6 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.19 -0.201 0.168E-01 -0.173E-02 0.103E-03
{SCF_istep: 7 , Vnl|psi>: 60 , wall_time: ' 0.01 [s] '} <<< TIME
ITER STEP NUMBER 8
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 8 -10.129534884009 3.020E-14 2.277E-16 3.459E-14
scprqt: <Vxc>= -4.5130247E-01 hartree
Pulay update with 7 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.13 -0.138 0.110E-01 -0.804E-03 0.623E-04
{SCF_istep: 8 , Vnl|psi>: 53 , wall_time: ' 0.00 [s] '} <<< TIME
ITER STEP NUMBER 9
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
ETOT 9 -10.129534884009 -7.816E-14 1.555E-17 1.435E-16
scprqt: <Vxc>= -4.5130247E-01 hartree
At SCF step 9 max residual= 1.55E-17 < tolwfr= 1.00E-16 =>converged.
-------------------------------------------------------------------------------------------------
Ekinetic = : 5.279020E+00 Ha , 1.436494E+02 eV
Evext_l = : -3.356801E+00 Ha , -9.134319E+01 eV
Evext_nl = : 1.895545E+00 Ha , 5.158039E+01 eV
Epsp_core = : 1.549159E-01 Ha , 4.215477E+00 eV
Ehartree = : 8.846303E-01 Ha , 2.407202E+01 eV
Exc_ks = : -4.035286E+00 Ha , -1.098057E+02 eV
Enn = : -1.095156E+01 Ha , -2.980071E+02 eV
-------------------------------------------------------------------------------------------------
Etot = : -1.012953E+01 Ha , -2.756387E+02 eV
-------------------------------------------------------------------------------------------------
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.21943395E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.21943395E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.21943395E-05 sigma(2 1)= 0.00000000E+00
fftdatar_write: About to write data to: t01o_DS1_DEN with iomode: IO_MODE_FORTRAN
IO operation completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
- Creating HDf5 file with MPI-IO support: t01o_DS1_GSR.nc
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.49487117
2 2.00000 2.28547042
================================================================================
----iterations are completed or convergence reached----
=== Gap info ===
>>>> For spin 1
Minimum direct gap = 5.7646 [eV], located at k-point : -0.2500 0.5000 0.0000
Fundamental gap = 3.4090 [eV], Top of valence bands at : -0.2500 0.0000 0.0000
Bottom of conduction at : -0.2500 0.5000 0.0000
Mean square residual over all n,k,spin= 51.941E-19; max= 15.548E-18
-0.2500 0.5000 0.0000 1 3.34482E-05 kpt; spin; max resid(k); each band:
4.41E-18 3.79E-18 3.62E-18 3.17E-18 7.84E-18 3.53E-18 4.24E-18 4.76E-18
5.24E-18 1.55E-17 6.42E-18 4.34E-17 5.46E-17 4.14E-08 3.34E-05
-0.2500 0.0000 0.0000 1 2.54663E-11 kpt; spin; max resid(k); each band:
4.29E-18 4.10E-18 7.50E-18 7.50E-18 5.57E-18 2.89E-18 2.89E-18 6.50E-18
3.26E-18 3.26E-18 4.43E-18 4.41E-18 6.45E-17 6.33E-17 2.55E-11
outwf: writing wavefunctions to: t01o_DS1_WFK with iomode: IO_MODE_FORTRAN_MASTER
WFK output completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
prteigrs : about to open file t01o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.41952 Average Vxc (hartree)= -0.45130
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 15, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.07284 0.12378 0.25467 0.33295 0.54480 0.74296 0.84457 0.85043
1.02148 1.12744 1.22394 1.29712 1.30730 1.52368 1.57789
kpt# 2, nband= 15, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
-0.18271 0.24113 0.41952 0.41952 0.64602 0.72652 0.72652 0.82820
0.92344 0.92344 0.99152 1.25006 1.35240 1.35240 1.54792
Fermi (or HOMO) energy (eV) = 11.41567 Average Vxc (eV)= -12.28056
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 15, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-1.98219 3.36823 6.93004 9.06006 14.82469 20.21688 22.98186 23.14127
27.79587 30.67916 33.30523 35.29643 35.57353 41.46153 42.93669
kpt# 2, nband= 15, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
-4.97193 6.56152 11.41567 11.41567 17.57908 19.76957 19.76957 22.53655
25.12796 25.12796 26.98073 34.01589 36.80062 36.80062 42.12102
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Next maximum= 2.1987E-01 at reduced coord. 0.0667 0.8000 0.0667
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Next minimum= 1.1050E-02 at reduced coord. 0.2667 0.2000 0.2667
Integrated= 8.0000E+00
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.21943395E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.21943395E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.21943395E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.5877E-01 GPa]
- sigma(1 1)= -3.58769793E-01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -3.58769793E-01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -3.58769793E-01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
==== Dense FFT mesh used for densities and potentials ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
GW calculation type = 0
zcut to avoid poles in chi0 [eV] = 0.100000
Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
wfk_read_eigenvalues completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Sorting g-vecs for an output of states on an unique "big" PW basis.
Since the number of g's to be written on file
was 0 or too large, it has been set to the max. value.,
computed from the union of the sets of G vectors for the different k-points.
Number of G-vectors is: 153
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9350000 3.9350000 G(1)= -0.1270648 0.1270648 0.1270648
R(2)= 3.9350000 0.0000000 3.9350000 G(2)= 0.1270648 -0.1270648 0.1270648
R(3)= 3.9350000 3.9350000 0.0000000 G(3)= 0.1270648 0.1270648 -0.1270648
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 C
2) 0.2500000 0.2500000 0.2500000 Si
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Optimal value for ng0sh: [2, 1, 1]
Due to umklapp processes : ecutepspg0= 2.54959050831297
setmesh: npwwfn = 65; Max (m1,m2,m3) = 2 2 2
npweps/npwsigx= 27; Max (mm1,mm2,mm3)= 4 3 3
mG0 added = 2 1 1
calculated ecutwfn = 5.099 [Ha]
calculated ecutsigx/ecuteps = 2.550 [Ha]
using method = 2 with ecuteff = 14.860 [Ha]
Finding a FFT mesh compatible with all the symmetries
setmesh: divisor mesh 1 1 1
setmesh: FFT mesh size selected = 9x 9x 9
total number of points = 729
integrate q->0 : numerical BZ geometry factor = 8.8829
vcoul_init : cutoff-mode = AUXILIARY_FUNCTION
q-points for optical limit: 1
1) 0.000010 0.000020 0.000030
==== FFT mesh used for oscillator strengths ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Top of valence: 11.4157 (eV)
Bottom of conduction: 14.8247 (eV)
Fermi level: 13.1202 (eV)
Memory needed for Fourier components u(G): 0.0 [Mb] <<< MEM
Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
Memory needed for real-space u(r): 0.1 [Mb] <<< MEM
Memory needed for bks_tab: 0.0 [Mb] <<< MEM
wfd_init completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
==== Info on the Wfd% object ====
Number of irreducible k-points ........ 2
Number of spinorial components ........ 1
Number of spin-density components ..... 1
Number of spin polarizations .......... 1
Plane wave cutoff energy .............. 6.0
Max number of G-vectors ............... 89
Total number of FFT points ............ 729
Number of FFT points treated by me .... 729
==== FFT mesh for wavefunctions ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Total number of (b,k,s) states stored by this rank: 12
Memory allocated for Fourier components u(G): 0.0 [Mb] <<< MEM
Memory allocated for real-space u(r): 0.0 [Mb] <<< MEM
Memory needed for wfd%s datastructure: 0.0 [Mb] <<< MEM
Memory needed for wfd%s(0)%k datastructure: 0.0 [Mb] <<< MEM
Memory allocated for Kdata array: 0.0 [Mb] <<< MEM
wfd_read_wfk: Reading file: t01o_DS1_WFK with iomode: IO_MODE_MPI , master_only: yes
If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...`
to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
About to read: 12 (b, k, s) states in total.
For spin: 1 , will read: 2 k-points.
Reading k-point [1/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Reading k-point [2/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
WFK IO completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
CHECK -1 15
planewave contribution to nelect: 8.0000
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.065649
r_s = 1.5378
omega_plasma = 24.7154 [eV]
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
2 0.000000E+00 1.360580E+01
Memory required for chi0 matrix= 0.0 [Mb].
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
Q-points for long wave-length limit. # 1
1) 0.000010 0.000020 0.000030
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 16 (b,b',k,s) states in chi0q0.
Calculating chi0(q=(0,0,0),omega,G,G")
==== Little Group Info ====
External point 0.00000000E+00 0.00000000E+00 0.00000000E+00
Number of points in the IBZ defined by little group 2/ 32
Number of operations in the little group : 48/ 24
No time-reversal symmetry with zero umklapp: 24
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 24
time-reversal symmetry with non-zero umklapp: 0
Calculation status ( 2 to be completed):
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.1, wall_time = 0.1
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 1, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -7.031 -0.404 -0.404 -0.404 -0.460 -1.228 -1.228 -1.228
-0.000 0.000 0.000 0.000 0.000 -1.564 -0.105 -0.105 -0.105
3 -0.000 -0.404 -7.031 -0.404 -0.404 -1.228 -0.460 -1.228 -1.228
0.000 -0.000 0.000 0.000 -0.000 -0.105 -1.564 -0.105 -0.105
4 0.000 -0.404 -0.404 -7.031 -0.404 -1.228 -1.228 -0.460 -1.228
-0.000 -0.000 -0.000 0.000 0.000 -0.105 -0.105 -1.564 -0.105
5 -0.000 -0.404 -0.404 -0.404 -7.031 -1.228 -1.228 -1.228 -0.460
0.000 -0.000 0.000 -0.000 0.000 -0.105 -0.105 -0.105 -1.564
6 -0.000 -0.460 -1.228 -1.228 -1.228 -7.031 -0.404 -0.404 -0.404
-0.000 1.564 0.105 0.105 0.105 0.000 -0.000 -0.000 -0.000
7 0.000 -1.228 -0.460 -1.228 -1.228 -0.404 -7.031 -0.404 -0.404
0.000 0.105 1.564 0.105 0.105 0.000 0.000 -0.000 -0.000
8 -0.000 -1.228 -1.228 -0.460 -1.228 -0.404 -0.404 -7.031 -0.404
-0.000 0.105 0.105 1.564 0.105 0.000 0.000 0.000 -0.000
9 0.000 -1.228 -1.228 -1.228 -0.460 -0.404 -0.404 -0.404 -7.031
0.000 0.105 0.105 0.105 1.564 0.000 0.000 0.000 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 1, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -3.854 -0.234 -0.234 -0.234 -0.701 -0.604 -0.604 -0.604
-0.000 0.000 0.000 -0.000 -0.000 -0.794 -0.048 -0.048 -0.048
3 -0.000 -0.234 -3.854 -0.234 -0.234 -0.604 -0.701 -0.604 -0.604
0.000 -0.000 0.000 -0.000 -0.000 -0.048 -0.794 -0.048 -0.048
4 0.000 -0.234 -0.234 -3.854 -0.234 -0.604 -0.604 -0.701 -0.604
-0.000 0.000 0.000 0.000 -0.000 -0.048 -0.048 -0.794 -0.048
5 -0.000 -0.234 -0.234 -0.234 -3.854 -0.604 -0.604 -0.604 -0.701
0.000 0.000 0.000 0.000 0.000 -0.048 -0.048 -0.048 -0.794
6 -0.000 -0.701 -0.604 -0.604 -0.604 -3.854 -0.234 -0.234 -0.234
-0.000 0.794 0.048 0.048 0.048 0.000 -0.000 0.000 -0.000
7 0.000 -0.604 -0.701 -0.604 -0.604 -0.234 -3.854 -0.234 -0.234
0.000 0.048 0.794 0.048 0.048 0.000 0.000 0.000 0.000
8 -0.000 -0.604 -0.604 -0.701 -0.604 -0.234 -0.234 -3.854 -0.234
-0.000 0.048 0.048 0.794 0.048 -0.000 -0.000 0.000 0.000
9 0.000 -0.604 -0.604 -0.604 -0.701 -0.234 -0.234 -0.234 -3.854
0.000 0.048 0.048 0.048 0.794 0.000 -0.000 -0.000 0.000
Analyzing long wavelength limit for several q
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 13.1891
dielectric constant without local fields = 14.0996
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 16.37 [%]
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000, 0.000000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 80 (b,b',k,s) states in chi0.
Calculating chi0(q,omega,G,G")
==== Little Group Info ====
External point -2.50000000E-01 0.00000000E+00 2.50000000E-01
Number of points in the IBZ defined by little group 10/ 32
Number of operations in the little group : 4/ 24
No time-reversal symmetry with zero umklapp: 2
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 2
time-reversal symmetry with non-zero umklapp: 0
Calculation status : 10 to be completed
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 2/ 32 spin= 1 done by mpi rank: 0
ik= 3/ 32 spin= 1 done by mpi rank: 0
ik= 4/ 32 spin= 1 done by mpi rank: 0
ik= 5/ 32 spin= 1 done by mpi rank: 0
ik= 6/ 32 spin= 1 done by mpi rank: 0
ik= 7/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
ik= 26/ 32 spin= 1 done by mpi rank: 0
ik= 27/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.0, wall_time = 0.0
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 2, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -7.810 0.492 -1.471 -1.503 -1.503 -1.471 0.492 -1.503 -1.503
0.000 -0.204 -0.587 -0.663 -0.663 0.587 0.204 0.663 0.663
2 0.492 -8.649 -0.403 -0.005 -0.005 -1.102 -0.332 -1.400 -1.400
0.204 0.000 0.149 0.047 0.047 -0.969 -0.478 -0.014 -0.014
3 -1.471 -0.403 -4.992 -0.262 -0.262 -0.843 -1.102 -0.886 -0.886
0.587 -0.149 0.000 -0.031 -0.031 0.073 -0.969 0.074 0.074
4 -1.503 -0.005 -0.262 -6.686 -0.616 -0.886 -1.400 -1.243 -1.010
0.663 -0.047 0.031 0.000 -0.000 0.074 -0.014 -0.707 0.051
5 -1.503 -0.005 -0.262 -0.616 -6.686 -0.886 -1.400 -1.010 -1.243
0.663 -0.047 0.031 0.000 0.000 0.074 -0.014 0.051 -0.707
6 -1.471 -1.102 -0.843 -0.886 -0.886 -4.992 -0.403 -0.262 -0.262
-0.587 0.969 -0.073 -0.074 -0.074 0.000 0.149 0.031 0.031
7 0.492 -0.332 -1.102 -1.400 -1.400 -0.403 -8.649 -0.005 -0.005
-0.204 0.478 0.969 0.014 0.014 -0.149 0.000 -0.047 -0.047
8 -1.503 -1.400 -0.886 -1.243 -1.010 -0.262 -0.005 -6.686 -0.616
-0.663 0.014 -0.074 0.707 -0.051 -0.031 0.047 0.000 -0.000
9 -1.503 -1.400 -0.886 -1.010 -1.243 -0.262 -0.005 -0.616 -6.686
-0.663 0.014 -0.074 -0.051 0.707 -0.031 0.047 0.000 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 2, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -3.229 0.222 -0.646 -0.653 -0.653 -0.646 0.222 -0.653 -0.653
0.000 -0.028 -0.289 -0.271 -0.271 0.289 0.028 0.271 0.271
2 0.222 -4.327 -0.215 -0.174 -0.174 -0.742 -0.295 -0.631 -0.631
0.028 0.000 0.064 0.018 0.018 -0.565 -0.159 -0.036 -0.036
3 -0.646 -0.215 -2.612 -0.102 -0.102 -0.419 -0.742 -0.461 -0.461
0.289 -0.064 0.000 -0.017 -0.017 0.015 -0.565 0.019 0.019
4 -0.653 -0.174 -0.102 -3.501 -0.292 -0.461 -0.631 -0.828 -0.595
0.271 -0.018 0.017 0.000 0.000 0.019 -0.036 -0.438 0.004
5 -0.653 -0.174 -0.102 -0.292 -3.501 -0.461 -0.631 -0.595 -0.828
0.271 -0.018 0.017 -0.000 0.000 0.019 -0.036 0.004 -0.438
6 -0.646 -0.742 -0.419 -0.461 -0.461 -2.612 -0.215 -0.102 -0.102
-0.289 0.565 -0.015 -0.019 -0.019 0.000 0.064 0.017 0.017
7 0.222 -0.295 -0.742 -0.631 -0.631 -0.215 -4.327 -0.174 -0.174
-0.028 0.159 0.565 0.036 0.036 -0.064 0.000 -0.018 -0.018
8 -0.653 -0.631 -0.461 -0.828 -0.595 -0.102 -0.174 -3.501 -0.292
-0.271 0.036 -0.019 0.438 -0.004 -0.017 0.018 0.000 0.000
9 -0.653 -0.631 -0.461 -0.595 -0.828 -0.102 -0.174 -0.292 -3.501
-0.271 0.036 -0.019 -0.004 0.438 -0.017 0.018 -0.000 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 45.55 [%]
--------------------------------------------------------------------------------
q-point number 3 q = ( 0.000000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 48 (b,b',k,s) states in chi0.
Calculating chi0(q,omega,G,G")
==== Little Group Info ====
External point 0.00000000E+00 5.00000000E-01 5.00000000E-01
Number of points in the IBZ defined by little group 6/ 32
Number of operations in the little group : 8/ 24
No time-reversal symmetry with zero umklapp: 4
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 4
time-reversal symmetry with non-zero umklapp: 0
Calculation status : 6 to be completed
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 2/ 32 spin= 1 done by mpi rank: 0
ik= 9/ 32 spin= 1 done by mpi rank: 0
ik= 10/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
ik= 26/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.0, wall_time = 0.0
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 3, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -8.749 -1.275 -1.288 -1.275 -1.288 -1.288 -1.275 -1.288 -1.275
0.000 -0.522 -0.671 -0.522 -0.671 0.671 0.522 0.671 0.522
2 -1.275 -8.175 -0.359 1.274 -0.359 -1.039 -1.279 -0.881 -1.279
0.522 0.000 -0.006 0.000 -0.006 -0.523 0.000 0.024 0.000
3 -1.288 -0.359 -4.538 -0.359 0.153 -0.732 -1.039 -0.732 -0.881
0.671 0.006 0.000 0.006 0.000 0.034 -0.523 0.034 0.024
4 -1.275 1.274 -0.359 -8.175 -0.359 -0.881 -1.279 -1.039 -1.279
0.522 -0.000 -0.006 0.000 -0.006 0.024 0.000 -0.523 0.000
5 -1.288 -0.359 0.153 -0.359 -4.538 -0.732 -0.881 -0.732 -1.039
0.671 0.006 -0.000 0.006 0.000 0.034 0.024 0.034 -0.523
6 -1.288 -1.039 -0.732 -0.881 -0.732 -4.538 -0.359 0.153 -0.359
-0.671 0.523 -0.034 -0.024 -0.034 0.000 -0.006 0.000 -0.006
7 -1.275 -1.279 -1.039 -1.279 -0.881 -0.359 -8.175 -0.359 1.274
-0.522 -0.000 0.523 -0.000 -0.024 0.006 0.000 0.006 0.000
8 -1.288 -0.881 -0.732 -1.039 -0.732 0.153 -0.359 -4.538 -0.359
-0.671 -0.024 -0.034 0.523 -0.034 -0.000 -0.006 0.000 -0.006
9 -1.275 -1.279 -0.881 -1.279 -1.039 -0.359 1.274 -0.359 -8.175
-0.522 -0.000 -0.024 -0.000 0.523 0.006 -0.000 0.006 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 3, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -4.175 -0.592 -0.657 -0.592 -0.657 -0.657 -0.592 -0.657 -0.592
0.000 -0.272 -0.311 -0.272 -0.311 0.311 0.272 0.311 0.272
2 -0.592 -4.233 -0.166 0.186 -0.166 -0.706 -0.662 -0.430 -0.662
0.272 0.000 0.016 0.000 0.016 -0.339 0.000 0.016 0.000
3 -0.657 -0.166 -2.372 -0.166 0.041 -0.395 -0.706 -0.395 -0.430
0.311 -0.016 0.000 -0.016 -0.000 -0.003 -0.339 -0.003 0.016
4 -0.592 0.186 -0.166 -4.233 -0.166 -0.430 -0.662 -0.706 -0.662
0.272 -0.000 0.016 0.000 0.016 0.016 0.000 -0.339 0.000
5 -0.657 -0.166 0.041 -0.166 -2.372 -0.395 -0.430 -0.395 -0.706
0.311 -0.016 0.000 -0.016 0.000 -0.003 0.016 -0.003 -0.339
6 -0.657 -0.706 -0.395 -0.430 -0.395 -2.372 -0.166 0.041 -0.166
-0.311 0.339 0.003 -0.016 0.003 0.000 0.016 0.000 0.016
7 -0.592 -0.662 -0.706 -0.662 -0.430 -0.166 -4.233 -0.166 0.186
-0.272 -0.000 0.339 -0.000 -0.016 -0.016 0.000 -0.016 -0.000
8 -0.657 -0.430 -0.395 -0.706 -0.395 0.041 -0.166 -2.372 -0.166
-0.311 -0.016 0.003 0.339 0.003 -0.000 0.016 0.000 0.016
9 -0.592 -0.662 -0.430 -0.662 -0.706 -0.166 0.186 -0.166 -4.233
-0.272 -0.000 -0.016 -0.000 0.339 -0.016 0.000 -0.016 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 37.02 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 80 (b,b',k,s) states in chi0.
Calculating chi0(q,omega,G,G")
==== Little Group Info ====
External point 5.00000000E-01 0.00000000E+00 0.00000000E+00
Number of points in the IBZ defined by little group 10/ 32
Number of operations in the little group : 6/ 24
No time-reversal symmetry with zero umklapp: 6
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 0
time-reversal symmetry with non-zero umklapp: 0
Calculation status : 10 to be completed
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 2/ 32 spin= 1 done by mpi rank: 0
ik= 4/ 32 spin= 1 done by mpi rank: 0
ik= 13/ 32 spin= 1 done by mpi rank: 0
ik= 14/ 32 spin= 1 done by mpi rank: 0
ik= 16/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
ik= 26/ 32 spin= 1 done by mpi rank: 0
ik= 29/ 32 spin= 1 done by mpi rank: 0
ik= 30/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.0, wall_time = 0.0
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 4, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -7.630 -1.021 -1.171 -1.171 -1.171 2.341 -1.519 -1.519 -1.519
0.000 -0.580 -0.658 -0.658 -0.658 -0.439 0.637 0.637 0.637
2 -1.021 -3.943 0.044 0.044 0.044 -0.769 -0.701 -0.701 -0.701
0.580 0.000 -0.028 -0.028 -0.028 -1.103 0.087 0.087 0.087
3 -1.171 0.044 -7.436 -0.447 -0.447 -0.879 -1.169 -1.003 -1.003
0.658 0.028 0.000 0.000 -0.000 -0.288 -0.663 0.060 0.060
4 -1.171 0.044 -0.447 -7.436 -0.447 -0.879 -1.003 -1.169 -1.003
0.658 0.028 -0.000 0.000 -0.000 -0.288 0.060 -0.663 0.060
5 -1.171 0.044 -0.447 -0.447 -7.436 -0.879 -1.003 -1.003 -1.169
0.658 0.028 0.000 0.000 0.000 -0.288 0.060 0.060 -0.663
6 2.341 -0.769 -0.879 -0.879 -0.879 -7.630 -0.091 -0.091 -0.091
0.439 1.103 0.288 0.288 0.288 0.000 -0.125 -0.125 -0.125
7 -1.519 -0.701 -1.169 -1.003 -1.003 -0.091 -5.358 -0.288 -0.288
-0.637 -0.087 0.663 -0.060 -0.060 0.125 0.000 -0.000 0.000
8 -1.519 -0.701 -1.003 -1.169 -1.003 -0.091 -0.288 -5.358 -0.288
-0.637 -0.087 -0.060 0.663 -0.060 0.125 0.000 0.000 0.000
9 -1.519 -0.701 -1.003 -1.003 -1.169 -0.091 -0.288 -0.288 -5.358
-0.637 -0.087 -0.060 -0.060 0.663 0.125 -0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 4, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -3.814 -0.580 -0.629 -0.629 -0.629 0.875 -0.700 -0.700 -0.700
0.000 -0.334 -0.298 -0.298 -0.298 -0.227 0.319 0.319 0.319
2 -0.580 -2.048 -0.028 -0.028 -0.028 -0.550 -0.383 -0.383 -0.383
0.334 0.000 -0.028 -0.028 -0.028 -0.585 0.019 0.019 0.019
3 -0.629 -0.028 -3.903 -0.283 -0.283 -0.392 -0.781 -0.528 -0.528
0.298 0.028 0.000 0.000 -0.000 -0.106 -0.368 0.014 0.014
4 -0.629 -0.028 -0.283 -3.903 -0.283 -0.392 -0.528 -0.781 -0.528
0.298 0.028 -0.000 0.000 -0.000 -0.106 0.014 -0.368 0.014
5 -0.629 -0.028 -0.283 -0.283 -3.903 -0.392 -0.528 -0.528 -0.781
0.298 0.028 0.000 0.000 0.000 -0.106 0.014 0.014 -0.368
6 0.875 -0.550 -0.392 -0.392 -0.392 -3.814 -0.159 -0.159 -0.159
0.227 0.585 0.106 0.106 0.106 0.000 -0.044 -0.044 -0.044
7 -0.700 -0.383 -0.781 -0.528 -0.528 -0.159 -2.865 -0.080 -0.080
-0.319 -0.019 0.368 -0.014 -0.014 0.044 0.000 -0.000 0.000
8 -0.700 -0.383 -0.528 -0.781 -0.528 -0.159 -0.080 -2.865 -0.080
-0.319 -0.019 -0.014 0.368 -0.014 0.044 0.000 0.000 0.000
9 -0.700 -0.383 -0.528 -0.528 -0.781 -0.159 -0.080 -0.080 -2.865
-0.319 -0.019 -0.014 -0.014 0.368 0.044 -0.000 -0.000 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 43.29 [%]
--------------------------------------------------------------------------------
q-point number 5 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 48 (b,b',k,s) states in chi0.
Calculating chi0(q,omega,G,G")
==== Little Group Info ====
External point -2.50000000E-01 0.00000000E+00 -2.50000000E-01
Number of points in the IBZ defined by little group 6/ 32
Number of operations in the little group : 8/ 24
No time-reversal symmetry with zero umklapp: 4
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 4
time-reversal symmetry with non-zero umklapp: 0
Calculation status : 6 to be completed
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 3/ 32 spin= 1 done by mpi rank: 0
ik= 5/ 32 spin= 1 done by mpi rank: 0
ik= 6/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
ik= 27/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.0, wall_time = 0.0
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 5, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -5.874 -0.025 -0.025 -1.500 -1.500 -1.500 -1.500 -0.025 -0.025
0.000 -0.233 -0.233 -0.534 -0.534 0.534 0.534 0.233 0.233
2 -0.025 -7.890 0.785 -0.581 -0.581 -0.990 -1.153 -1.241 -1.241
0.233 0.000 0.000 0.088 0.088 -1.064 -0.041 -0.104 -0.104
3 -0.025 0.785 -7.890 -0.581 -0.581 -1.153 -0.990 -1.241 -1.241
0.233 -0.000 0.000 0.088 0.088 -0.041 -1.064 -0.104 -0.104
4 -1.500 -0.581 -0.581 -6.074 -0.361 -1.042 -1.042 -0.990 -1.153
0.534 -0.088 -0.088 0.000 -0.000 0.073 0.073 -1.064 -0.041
5 -1.500 -0.581 -0.581 -0.361 -6.074 -1.042 -1.042 -1.153 -0.990
0.534 -0.088 -0.088 0.000 0.000 0.073 0.073 -0.041 -1.064
6 -1.500 -0.990 -1.153 -1.042 -1.042 -6.074 -0.361 -0.581 -0.581
-0.534 1.064 0.041 -0.073 -0.073 0.000 -0.000 0.088 0.088
7 -1.500 -1.153 -0.990 -1.042 -1.042 -0.361 -6.074 -0.581 -0.581
-0.534 0.041 1.064 -0.073 -0.073 0.000 0.000 0.088 0.088
8 -0.025 -1.241 -1.241 -0.990 -1.153 -0.581 -0.581 -7.890 0.785
-0.233 0.104 0.104 1.064 0.041 -0.088 -0.088 0.000 -0.000
9 -0.025 -1.241 -1.241 -1.153 -0.990 -0.581 -0.581 0.785 -7.890
-0.233 0.104 0.104 0.041 1.064 -0.088 -0.088 0.000 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 5, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -2.120 -0.014 -0.014 -0.584 -0.584 -0.584 -0.584 -0.014 -0.014
0.000 -0.078 -0.078 -0.207 -0.207 0.207 0.207 0.078 0.078
2 -0.014 -4.132 0.022 -0.279 -0.279 -0.788 -0.583 -0.636 -0.636
0.078 0.000 -0.000 0.033 0.033 -0.619 -0.004 -0.079 -0.079
3 -0.014 0.022 -4.132 -0.279 -0.279 -0.583 -0.788 -0.636 -0.636
0.078 0.000 0.000 0.033 0.033 -0.004 -0.619 -0.079 -0.079
4 -0.584 -0.279 -0.279 -3.218 -0.145 -0.508 -0.508 -0.788 -0.583
0.207 -0.033 -0.033 0.000 0.000 0.012 0.012 -0.619 -0.004
5 -0.584 -0.279 -0.279 -0.145 -3.218 -0.508 -0.508 -0.583 -0.788
0.207 -0.033 -0.033 -0.000 0.000 0.012 0.012 -0.004 -0.619
6 -0.584 -0.788 -0.583 -0.508 -0.508 -3.218 -0.145 -0.279 -0.279
-0.207 0.619 0.004 -0.012 -0.012 0.000 0.000 0.033 0.033
7 -0.584 -0.583 -0.788 -0.508 -0.508 -0.145 -3.218 -0.279 -0.279
-0.207 0.004 0.619 -0.012 -0.012 -0.000 0.000 0.033 0.033
8 -0.014 -0.636 -0.636 -0.788 -0.583 -0.279 -0.279 -4.132 0.022
-0.078 0.079 0.079 0.619 0.004 -0.033 -0.033 0.000 0.000
9 -0.014 -0.636 -0.636 -0.583 -0.788 -0.279 -0.279 0.022 -4.132
-0.078 0.079 0.079 0.004 0.619 -0.033 -0.033 -0.000 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 59.68 [%]
--------------------------------------------------------------------------------
q-point number 6 q = (-0.250000, 0.500000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
Using spectral method for the imaginary part = 0
Using symmetries to sum only over the IBZ_q = 1
Using faster algorithm based on time reversal symmetry.
Will sum 128 (b,b',k,s) states in chi0.
Calculating chi0(q,omega,G,G")
==== Little Group Info ====
External point -2.50000000E-01 5.00000000E-01 2.50000000E-01
Number of points in the IBZ defined by little group 16/ 32
Number of operations in the little group : 2/ 24
No time-reversal symmetry with zero umklapp: 1
No time-reversal symmetry with non-zero umklapp: 0
time-reversal symmetry with zero umklapp: 1
time-reversal symmetry with non-zero umklapp: 0
Calculation status : 16 to be completed
ik= 1/ 32 spin= 1 done by mpi rank: 0
ik= 2/ 32 spin= 1 done by mpi rank: 0
ik= 3/ 32 spin= 1 done by mpi rank: 0
ik= 4/ 32 spin= 1 done by mpi rank: 0
ik= 5/ 32 spin= 1 done by mpi rank: 0
ik= 6/ 32 spin= 1 done by mpi rank: 0
ik= 7/ 32 spin= 1 done by mpi rank: 0
ik= 8/ 32 spin= 1 done by mpi rank: 0
ik= 9/ 32 spin= 1 done by mpi rank: 0
ik= 10/ 32 spin= 1 done by mpi rank: 0
ik= 11/ 32 spin= 1 done by mpi rank: 0
ik= 12/ 32 spin= 1 done by mpi rank: 0
ik= 25/ 32 spin= 1 done by mpi rank: 0
ik= 26/ 32 spin= 1 done by mpi rank: 0
ik= 27/ 32 spin= 1 done by mpi rank: 0
ik= 28/ 32 spin= 1 done by mpi rank: 0
cpu_time = 0.0, wall_time = 0.0
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
chi0(q = 6, omega = 1, G,G')
1 2 3 4 5 6 7 8 9
1 -9.281 -0.983 -1.325 -1.731 -1.204 -1.204 -1.731 -1.325 -0.983
0.000 -0.599 -0.765 -0.678 -0.658 0.658 0.678 0.765 0.599
2 -0.983 -9.281 -0.339 0.505 -0.455 -1.108 -1.282 -1.187 -0.306
0.599 0.000 0.024 -0.000 0.048 -0.601 0.000 0.046 0.000
3 -1.325 -0.339 -5.163 -0.336 0.179 -0.706 -1.125 -0.626 -1.187
0.765 -0.024 0.000 0.063 0.052 0.050 -0.360 -0.006 0.046
4 -1.731 0.505 -0.336 -6.843 0.116 -0.648 -0.996 -1.125 -1.282
0.678 0.000 -0.063 0.000 -0.011 0.103 -0.000 -0.360 0.000
5 -1.204 -0.455 0.179 0.116 -3.714 -0.774 -0.648 -0.706 -1.108
0.658 -0.048 -0.052 0.011 0.000 -0.012 0.103 0.050 -0.601
6 -1.204 -1.108 -0.706 -0.648 -0.774 -3.714 0.116 0.179 -0.455
-0.658 0.601 -0.050 -0.103 0.012 0.000 -0.011 0.052 0.048
7 -1.731 -1.282 -1.125 -0.996 -0.648 0.116 -6.843 -0.336 0.505
-0.678 -0.000 0.360 0.000 -0.103 0.011 0.000 0.063 -0.000
8 -1.325 -1.187 -0.626 -1.125 -0.706 0.179 -0.336 -5.163 -0.339
-0.765 -0.046 0.006 0.360 -0.050 -0.052 -0.063 0.000 0.024
9 -0.983 -0.306 -1.187 -1.282 -1.108 -0.455 0.505 -0.339 -9.281
-0.599 -0.000 -0.046 -0.000 0.601 -0.048 0.000 -0.024 0.000
chi0(G,G') at the 2 th omega 0.0000 13.6058 [eV]
chi0(q = 6, omega = 2, G,G')
1 2 3 4 5 6 7 8 9
1 -4.318 -0.376 -0.707 -0.807 -0.577 -0.577 -0.807 -0.707 -0.376
0.000 -0.233 -0.329 -0.342 -0.324 0.324 0.342 0.329 0.233
2 -0.376 -4.318 -0.258 -0.029 -0.120 -0.618 -0.610 -0.474 -0.128
0.233 0.000 0.038 -0.000 0.032 -0.315 0.000 0.003 0.000
3 -0.707 -0.258 -2.653 -0.116 0.059 -0.369 -0.677 -0.418 -0.474
0.329 -0.038 0.000 0.009 0.012 0.005 -0.258 -0.010 0.003
4 -0.807 -0.029 -0.116 -3.564 0.014 -0.352 -0.608 -0.677 -0.610
0.342 0.000 -0.009 0.000 -0.001 0.027 -0.000 -0.258 0.000
5 -0.577 -0.120 0.059 0.014 -1.866 -0.389 -0.352 -0.369 -0.618
0.324 -0.032 -0.012 0.001 0.000 -0.017 0.027 0.005 -0.315
6 -0.577 -0.618 -0.369 -0.352 -0.389 -1.866 0.014 0.059 -0.120
-0.324 0.315 -0.005 -0.027 0.017 0.000 -0.001 0.012 0.032
7 -0.807 -0.610 -0.677 -0.608 -0.352 0.014 -3.564 -0.116 -0.029
-0.342 -0.000 0.258 0.000 -0.027 0.001 0.000 0.009 -0.000
8 -0.707 -0.474 -0.418 -0.677 -0.369 0.059 -0.116 -2.653 -0.258
-0.329 -0.003 0.010 0.258 -0.005 -0.012 -0.009 0.000 0.038
9 -0.376 -0.128 -0.474 -0.610 -0.618 -0.120 -0.029 -0.258 -4.318
-0.233 -0.000 -0.003 -0.000 0.315 -0.032 0.000 -0.038 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 36.18 [%]
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getscr/=0, take file _SCR from output of DATASET 2.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
==== Dense FFT mesh used for densities and potentials ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
wfk_read_eigenvalues completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Sorting g-vecs for an output of states on an unique "big" PW basis.
Since the number of g's to be written on file
was 0 or too large, it has been set to the max. value.,
computed from the union of the sets of G vectors for the different k-points.
Number of G-vectors is: 153
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9350000 3.9350000 G(1)= -0.1270648 0.1270648 0.1270648
R(2)= 3.9350000 0.0000000 3.9350000 G(2)= 0.1270648 -0.1270648 0.1270648
R(3)= 3.9350000 3.9350000 0.0000000 G(3)= 0.1270648 0.1270648 -0.1270648
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 C
2) 0.2500000 0.2500000 0.2500000 Si
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Top of valence: 11.4157 (eV)
Bottom of conduction: 14.8247 (eV)
Fermi level: 13.1202 (eV)
Indirect band gap semiconductor
Fundamental gap: 3.409 (eV)
VBM: 11.416 (eV) at k: [-2.5000E-01, 0.0000E+00, 0.0000E+00]
CBM: 14.825 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 5.765 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
>>>> For spin 1
Minimum direct gap = 5.7646 [eV], located at k-point : -0.2500 0.5000 0.0000
Fundamental gap = 3.4090 [eV], Top of valence bands at : -0.2500 0.0000 0.0000
Bottom of conduction at : -0.2500 0.5000 0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
SCR file: epsilon^-1 , calculated using inclvkb = 2
TESTPARTICLE RPA
Identifier 4
Kxc kernel 0
Treatment of q-->0 limit 2
headform 80
fform 1004
gwcalctyp 0
Number of components 1 1
Number of q-points 6
Number of q-directions 1
Number of frequencies 2
Number of bands used 10
Dimension of matrix 27
Number of planewaves used 65
Spectral method 0
Test_type 0
Time-ordering 1
Scissor Energy 0.000000E+00
Spectral smearing 1.000000E-01
Complex Imaginary Shift 3.674933E-03
The header contains additional records.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Optimal value for ng0sh [1, 2, 1]
vcoul_init : cutoff-mode = CRYSTAL
q-points for optical limit: 1
1) 0.000010 0.000020 0.000030
setmesh: npwwfn = 65; Max (m1,m2,m3) = 2 2 2
npweps/npwsigx= 27; Max (mm1,mm2,mm3)= 3 4 3
mG0 added = 1 2 1
calculated ecutwfn = 5.099 [Ha]
calculated ecutsigx/ecuteps = 2.550 [Ha]
using method = 2 with ecuteff = 14.860 [Ha]
Finding a FFT mesh compatible with all the symmetries
setmesh: divisor mesh 1 1 1
setmesh: FFT mesh size selected = 9x 9x 9
total number of points = 729
==== FFT mesh for oscillator strengths used for Sigma_c ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
==== FFT mesh for oscillator strengths used for Sigma_x ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Memory needed for Fourier components u(G): 0.0 [Mb] <<< MEM
Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
Memory needed for real-space u(r): 0.1 [Mb] <<< MEM
Memory needed for bks_tab: 0.0 [Mb] <<< MEM
wfd_init completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
wfd_read_wfk: Reading file: t01o_DS1_WFK with iomode: IO_MODE_MPI , master_only: yes
If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...`
to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
About to read: 7 (b, k, s) states in total.
For spin: 1 , will read: 2 k-points.
Reading k-point [1/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Reading k-point [2/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
WFK IO completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
planewave contribution to nelect: 8.0000
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.065649
r_s = 1.5378
omega_plasma = 24.7154 [eV]
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
For spin 1 Min density rhor = 0.110504E-01
E_xc[n_val] = -3.0696 [Ha]. <V_xc[n_val]> = -0.4305 [Ha].
Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.
=== Matrix elements in the KS basis set [eV] ===
kpt= ( -2.50000000E-01 5.00000000E-01 0.00000000E+00) spin= 1:
ib vxc vxcval vhartree
4 -14.32103 -13.80525 6.37050
5 -11.97096 -11.45292 -1.08018
Er%ID: 4 , Er%Hscr%ID: 4
Memory needed for Er%epsm1 = 0.1 [Mb] <<< MEM
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 4.989594028744
omega twiddle min location = 2 6
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 3.796814495765
omega twiddle min location = 21 26
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 5.122295956029
omega twiddle min location = 14 25
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 7.870310828743
omega twiddle min location = 26 24
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 4.877316001779
omega twiddle min location = 8 11
Imaginary frequency for fit located at: 13.6058 [eV]
cppm1par : omega twiddle minval [eV] = 4.615782317454
omega twiddle min location = 26 18
SIGMA fundamental parameters:
PLASMON POLE MODEL 1
number of plane-waves for SigmaX 27
number of plane-waves for SigmaC and W 27
number of plane-waves for wavefunctions 65
number of bands 10
number of independent spin polarizations 1
number of spinorial components 1
number of k-points in IBZ 2
number of q-points in IBZ 6
number of symmetry operations 24
number of k-points in BZ 32
number of q-points in BZ 32
number of frequencies for dSigma/dE 5
frequency step for dSigma/dE [eV] 0.25
number of omega for Sigma on real axis 0
max omega for Sigma on real axis [eV] 0.00
zcut for avoiding poles [eV] 0.10
EPSILON^-1 parameters (SCR file):
dimension of the eps^-1 matrix on file 27
dimension of the eps^-1 matrix used 27
number of plane-waves for wavefunctions 65
number of bands 10
number of q-points in IBZ 6
number of frequencies 2
number of real frequencies 1
number of imag frequencies 1
matrix elements of self-energy operator (all in [eV])
Perturbative Calculation
==== Info on the Wfd% object ====
Number of irreducible k-points ........ 2
Number of spinorial components ........ 1
Number of spin-density components ..... 1
Number of spin polarizations .......... 1
Plane wave cutoff energy .............. 6.0
Max number of G-vectors ............... 89
Total number of FFT points ............ 3375
Number of FFT points treated by me .... 3375
==== FFT mesh for wavefunctions ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Total number of (b,k,s) states stored by this rank: 7
Memory allocated for Fourier components u(G): 0.0 [Mb] <<< MEM
Memory allocated for real-space u(r): 0.2 [Mb] <<< MEM
Memory needed for wfd%s datastructure: 0.0 [Mb] <<< MEM
Memory needed for wfd%s(0)%k datastructure: 0.0 [Mb] <<< MEM
Memory allocated for Kdata array: 0.0 [Mb] <<< MEM
standard GW with PPM
Perturbative Calculation
Calculating <nk|Sigma_x|nk> at k= 0.250 0.750 0.250
bands from 4 to 5
Will sum 38 (b, k, s) occupied states in Sigma_x.
calc_sigx_me: calculation status (32 to be completed):
calc_sigx_me: ik_bz 1/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 2/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 3/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 4/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 5/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 6/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 7/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 8/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 9/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 10/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 11/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 12/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 13/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 14/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 15/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 16/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 17/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 18/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 19/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 20/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 21/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 22/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 23/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 24/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 25/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 26/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 27/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 28/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 29/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 30/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 31/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 32/ 32 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
Calculating <nk|Sigma_c(omega)|nk> at k = 0.250 0.750 0.250
bands n = from 4 to 5
standard GW with PPM
Will sum 84 (b,k,s) states in Sigma_c.
calculation status ( 32 to be completed):
Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
k = 0.250 0.750 0.250
Band E0 <VxcDFT> SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E
4 9.060 -13.805 -16.189 3.740 0.809 -0.236 -12.707 1.098 10.158
4 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
5 14.825 -11.453 -5.994 -3.070 0.838 -0.194 -9.452 2.001 16.826
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E^0_gap 5.765
E^GW_gap 6.668
DeltaE^GW_gap 0.903
- Creating HDf5 file with MPI-IO support: t01o_DS3_SIGRES.nc
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getscr/=0, take file _SCR from output of DATASET 2.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
==== Dense FFT mesh used for densities and potentials ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
wfk_read_eigenvalues completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Sorting g-vecs for an output of states on an unique "big" PW basis.
Since the number of g's to be written on file
was 0 or too large, it has been set to the max. value.,
computed from the union of the sets of G vectors for the different k-points.
Number of G-vectors is: 153
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9350000 3.9350000 G(1)= -0.1270648 0.1270648 0.1270648
R(2)= 3.9350000 0.0000000 3.9350000 G(2)= 0.1270648 -0.1270648 0.1270648
R(3)= 3.9350000 3.9350000 0.0000000 G(3)= 0.1270648 0.1270648 -0.1270648
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 C
2) 0.2500000 0.2500000 0.2500000 Si
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Top of valence: 11.4157 (eV)
Bottom of conduction: 14.8247 (eV)
Fermi level: 13.1202 (eV)
Indirect band gap semiconductor
Fundamental gap: 3.409 (eV)
VBM: 11.416 (eV) at k: [-2.5000E-01, 0.0000E+00, 0.0000E+00]
CBM: 14.825 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 5.765 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
>>>> For spin 1
Minimum direct gap = 5.7646 [eV], located at k-point : -0.2500 0.5000 0.0000
Fundamental gap = 3.4090 [eV], Top of valence bands at : -0.2500 0.0000 0.0000
Bottom of conduction at : -0.2500 0.5000 0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
SCR file: epsilon^-1 , calculated using inclvkb = 2
TESTPARTICLE RPA
Identifier 4
Kxc kernel 0
Treatment of q-->0 limit 2
headform 80
fform 1004
gwcalctyp 0
Number of components 1 1
Number of q-points 6
Number of q-directions 1
Number of frequencies 2
Number of bands used 10
Dimension of matrix 27
Number of planewaves used 65
Spectral method 0
Test_type 0
Time-ordering 1
Scissor Energy 0.000000E+00
Spectral smearing 1.000000E-01
Complex Imaginary Shift 3.674933E-03
The header contains additional records.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Optimal value for ng0sh [1, 2, 1]
vcoul_init : cutoff-mode = CRYSTAL
q-points for optical limit: 1
1) 0.000010 0.000020 0.000030
setmesh: npwwfn = 65; Max (m1,m2,m3) = 2 2 2
npweps/npwsigx= 27; Max (mm1,mm2,mm3)= 3 4 3
mG0 added = 1 2 1
calculated ecutwfn = 5.099 [Ha]
calculated ecutsigx/ecuteps = 2.550 [Ha]
using method = 2 with ecuteff = 14.860 [Ha]
Finding a FFT mesh compatible with all the symmetries
setmesh: divisor mesh 1 1 1
setmesh: FFT mesh size selected = 9x 9x 9
total number of points = 729
==== FFT mesh for oscillator strengths used for Sigma_c ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
==== FFT mesh for oscillator strengths used for Sigma_x ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Memory needed for Fourier components u(G): 0.0 [Mb] <<< MEM
Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
Memory needed for real-space u(r): 0.1 [Mb] <<< MEM
Memory needed for bks_tab: 0.0 [Mb] <<< MEM
wfd_init completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
wfd_read_wfk: Reading file: t01o_DS1_WFK with iomode: IO_MODE_MPI , master_only: yes
If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...`
to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
About to read: 7 (b, k, s) states in total.
For spin: 1 , will read: 2 k-points.
Reading k-point [1/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Reading k-point [2/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
WFK IO completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
planewave contribution to nelect: 8.0000
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.065649
r_s = 1.5378
omega_plasma = 24.7154 [eV]
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
For spin 1 Min density rhor = 0.110504E-01
E_xc[n_val] = -3.0696 [Ha]. <V_xc[n_val]> = -0.4305 [Ha].
Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.
=== Matrix elements in the KS basis set [eV] ===
kpt= ( -2.50000000E-01 5.00000000E-01 0.00000000E+00) spin= 1:
ib vxc vxcval vhartree
4 -14.32103 -13.80525 6.37050
5 -11.97096 -11.45292 -1.08018
Er%ID: 4 , Er%Hscr%ID: 4
Memory needed for Er%epsm1 = 0.1 [Mb] <<< MEM
at q-point : 0.000000 0.000000 0.000000 number of imaginary plasmonpole frequencies = 446 / 729
cppm2par : omega twiddle minval [eV] = 20.15769711
omega twiddle min location = 9 5
at q-point : -0.250000 0.000000 0.250000 number of imaginary plasmonpole frequencies = 344 / 729
cppm2par : omega twiddle minval [eV] = 8.68811274
omega twiddle min location = 23 1
at q-point : 0.000000 0.500000 0.500000 number of imaginary plasmonpole frequencies = 364 / 729
cppm2par : omega twiddle minval [eV] = 8.43537335
omega twiddle min location = 2 4
at q-point : 0.500000 0.000000 0.000000 number of imaginary plasmonpole frequencies = 348 / 729
cppm2par : omega twiddle minval [eV] = 10.45595855
omega twiddle min location = 15 8
at q-point : -0.250000 0.000000 -0.250000 number of imaginary plasmonpole frequencies = 348 / 729
cppm2par : omega twiddle minval [eV] = 7.85335652
omega twiddle min location = 16 18
at q-point : -0.250000 0.500000 0.250000 number of imaginary plasmonpole frequencies = 302 / 729
cppm2par : omega twiddle minval [eV] = 4.51560294
omega twiddle min location = 27 1
SIGMA fundamental parameters:
PLASMON POLE MODEL 2
number of plane-waves for SigmaX 27
number of plane-waves for SigmaC and W 27
number of plane-waves for wavefunctions 65
number of bands 10
number of independent spin polarizations 1
number of spinorial components 1
number of k-points in IBZ 2
number of q-points in IBZ 6
number of symmetry operations 24
number of k-points in BZ 32
number of q-points in BZ 32
number of frequencies for dSigma/dE 5
frequency step for dSigma/dE [eV] 0.25
number of omega for Sigma on real axis 0
max omega for Sigma on real axis [eV] 0.00
zcut for avoiding poles [eV] 0.10
EPSILON^-1 parameters (SCR file):
dimension of the eps^-1 matrix on file 27
dimension of the eps^-1 matrix used 27
number of plane-waves for wavefunctions 65
number of bands 10
number of q-points in IBZ 6
number of frequencies 2
number of real frequencies 1
number of imag frequencies 1
matrix elements of self-energy operator (all in [eV])
Perturbative Calculation
==== Info on the Wfd% object ====
Number of irreducible k-points ........ 2
Number of spinorial components ........ 1
Number of spin-density components ..... 1
Number of spin polarizations .......... 1
Plane wave cutoff energy .............. 6.0
Max number of G-vectors ............... 89
Total number of FFT points ............ 3375
Number of FFT points treated by me .... 3375
==== FFT mesh for wavefunctions ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Total number of (b,k,s) states stored by this rank: 7
Memory allocated for Fourier components u(G): 0.0 [Mb] <<< MEM
Memory allocated for real-space u(r): 0.2 [Mb] <<< MEM
Memory needed for wfd%s datastructure: 0.0 [Mb] <<< MEM
Memory needed for wfd%s(0)%k datastructure: 0.0 [Mb] <<< MEM
Memory allocated for Kdata array: 0.0 [Mb] <<< MEM
standard GW with PPM
Perturbative Calculation
Calculating <nk|Sigma_x|nk> at k= 0.250 0.750 0.250
bands from 4 to 5
Will sum 38 (b, k, s) occupied states in Sigma_x.
calc_sigx_me: calculation status (32 to be completed):
calc_sigx_me: ik_bz 1/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 2/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 3/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 4/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 5/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 6/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 7/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 8/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 9/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 10/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 11/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 12/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 13/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 14/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 15/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 16/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 17/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 18/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 19/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 20/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 21/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 22/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 23/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 24/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 25/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 26/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 27/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 28/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 29/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 30/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 31/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 32/ 32 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
Calculating <nk|Sigma_c(omega)|nk> at k = 0.250 0.750 0.250
bands n = from 4 to 5
standard GW with PPM
Will sum 84 (b,k,s) states in Sigma_c.
calculation status ( 32 to be completed):
Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
k = 0.250 0.750 0.250
Band E0 <VxcDFT> SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E
4 9.060 -13.805 -16.189 3.646 0.842 -0.187 -12.741 1.064 10.124
4 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
5 14.825 -11.453 -5.994 -3.097 0.861 -0.162 -9.421 2.032 16.857
5 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
E^0_gap 5.765
E^GW_gap 6.733
DeltaE^GW_gap 0.968
- Creating HDf5 file with MPI-IO support: t01o_DS4_SIGRES.nc
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getscr/=0, take file _SCR from output of DATASET 2.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
==== Dense FFT mesh used for densities and potentials ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
wfk_read_eigenvalues completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Sorting g-vecs for an output of states on an unique "big" PW basis.
Since the number of g's to be written on file
was 0 or too large, it has been set to the max. value.,
computed from the union of the sets of G vectors for the different k-points.
Number of G-vectors is: 153
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9350000 3.9350000 G(1)= -0.1270648 0.1270648 0.1270648
R(2)= 3.9350000 0.0000000 3.9350000 G(2)= 0.1270648 -0.1270648 0.1270648
R(3)= 3.9350000 3.9350000 0.0000000 G(3)= 0.1270648 0.1270648 -0.1270648
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 C
2) 0.2500000 0.2500000 0.2500000 Si
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Top of valence: 11.4157 (eV)
Bottom of conduction: 14.8247 (eV)
Fermi level: 13.1202 (eV)
Indirect band gap semiconductor
Fundamental gap: 3.409 (eV)
VBM: 11.416 (eV) at k: [-2.5000E-01, 0.0000E+00, 0.0000E+00]
CBM: 14.825 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 5.765 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
>>>> For spin 1
Minimum direct gap = 5.7646 [eV], located at k-point : -0.2500 0.5000 0.0000
Fundamental gap = 3.4090 [eV], Top of valence bands at : -0.2500 0.0000 0.0000
Bottom of conduction at : -0.2500 0.5000 0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
SCR file: epsilon^-1 , calculated using inclvkb = 2
TESTPARTICLE RPA
Identifier 4
Kxc kernel 0
Treatment of q-->0 limit 2
headform 80
fform 1004
gwcalctyp 0
Number of components 1 1
Number of q-points 6
Number of q-directions 1
Number of frequencies 2
Number of bands used 10
Dimension of matrix 27
Number of planewaves used 65
Spectral method 0
Test_type 0
Time-ordering 1
Scissor Energy 0.000000E+00
Spectral smearing 1.000000E-01
Complex Imaginary Shift 3.674933E-03
The header contains additional records.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Optimal value for ng0sh [1, 2, 1]
vcoul_init : cutoff-mode = CRYSTAL
q-points for optical limit: 1
1) 0.000010 0.000020 0.000030
setmesh: npwwfn = 65; Max (m1,m2,m3) = 2 2 2
npweps/npwsigx= 27; Max (mm1,mm2,mm3)= 3 4 3
mG0 added = 1 2 1
calculated ecutwfn = 5.099 [Ha]
calculated ecutsigx/ecuteps = 2.550 [Ha]
using method = 2 with ecuteff = 14.860 [Ha]
Finding a FFT mesh compatible with all the symmetries
setmesh: divisor mesh 1 1 1
setmesh: FFT mesh size selected = 9x 9x 9
total number of points = 729
==== FFT mesh for oscillator strengths used for Sigma_c ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
==== FFT mesh for oscillator strengths used for Sigma_x ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Memory needed for Fourier components u(G): 0.0 [Mb] <<< MEM
Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
Memory needed for real-space u(r): 0.1 [Mb] <<< MEM
Memory needed for bks_tab: 0.0 [Mb] <<< MEM
wfd_init completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
wfd_read_wfk: Reading file: t01o_DS1_WFK with iomode: IO_MODE_MPI , master_only: yes
If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...`
to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
About to read: 7 (b, k, s) states in total.
For spin: 1 , will read: 2 k-points.
Reading k-point [1/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Reading k-point [2/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
WFK IO completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
planewave contribution to nelect: 8.0000
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.065649
r_s = 1.5378
omega_plasma = 24.7154 [eV]
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
For spin 1 Min density rhor = 0.110504E-01
E_xc[n_val] = -3.0696 [Ha]. <V_xc[n_val]> = -0.4305 [Ha].
Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.
=== Matrix elements in the KS basis set [eV] ===
kpt= ( -2.50000000E-01 5.00000000E-01 0.00000000E+00) spin= 1:
ib vxc vxcval vhartree
4 -14.32103 -13.80525 6.37050
5 -11.97096 -11.45292 -1.08018
Er%ID: 4 , Er%Hscr%ID: 4
Memory needed for Er%epsm1 = 0.1 [Mb] <<< MEM
cppm3par : omega twiddle minval [eV] = 25.62073931
omega twiddle min location = 1
cppm3par : omega twiddle minval [eV] = 30.99804033
omega twiddle min location = 1
cppm3par : omega twiddle minval [eV] = 33.54916967
omega twiddle min location = 2
cppm3par : omega twiddle minval [eV] = 33.97992408
omega twiddle min location = 1
cppm3par : omega twiddle minval [eV] = 29.22693245
omega twiddle min location = 1
cppm3par : omega twiddle minval [eV] = 33.51334146
omega twiddle min location = 1
SIGMA fundamental parameters:
PLASMON POLE MODEL 3
number of plane-waves for SigmaX 27
number of plane-waves for SigmaC and W 27
number of plane-waves for wavefunctions 65
number of bands 10
number of independent spin polarizations 1
number of spinorial components 1
number of k-points in IBZ 2
number of q-points in IBZ 6
number of symmetry operations 24
number of k-points in BZ 32
number of q-points in BZ 32
number of frequencies for dSigma/dE 5
frequency step for dSigma/dE [eV] 0.25
number of omega for Sigma on real axis 0
max omega for Sigma on real axis [eV] 0.00
zcut for avoiding poles [eV] 0.10
EPSILON^-1 parameters (SCR file):
dimension of the eps^-1 matrix on file 27
dimension of the eps^-1 matrix used 27
number of plane-waves for wavefunctions 65
number of bands 10
number of q-points in IBZ 6
number of frequencies 2
number of real frequencies 1
number of imag frequencies 1
matrix elements of self-energy operator (all in [eV])
Perturbative Calculation
==== Info on the Wfd% object ====
Number of irreducible k-points ........ 2
Number of spinorial components ........ 1
Number of spin-density components ..... 1
Number of spin polarizations .......... 1
Plane wave cutoff energy .............. 6.0
Max number of G-vectors ............... 89
Total number of FFT points ............ 3375
Number of FFT points treated by me .... 3375
==== FFT mesh for wavefunctions ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Total number of (b,k,s) states stored by this rank: 7
Memory allocated for Fourier components u(G): 0.0 [Mb] <<< MEM
Memory allocated for real-space u(r): 0.2 [Mb] <<< MEM
Memory needed for wfd%s datastructure: 0.0 [Mb] <<< MEM
Memory needed for wfd%s(0)%k datastructure: 0.0 [Mb] <<< MEM
Memory allocated for Kdata array: 0.0 [Mb] <<< MEM
standard GW with PPM
Perturbative Calculation
Calculating <nk|Sigma_x|nk> at k= 0.250 0.750 0.250
bands from 4 to 5
Will sum 38 (b, k, s) occupied states in Sigma_x.
calc_sigx_me: calculation status (32 to be completed):
calc_sigx_me: ik_bz 1/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 2/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 3/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 4/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 5/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 6/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 7/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 8/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 9/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 10/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 11/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 12/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 13/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 14/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 15/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 16/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 17/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 18/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 19/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 20/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 21/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 22/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 23/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 24/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 25/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 26/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 27/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 28/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 29/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 30/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 31/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 32/ 32 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
Calculating <nk|Sigma_c(omega)|nk> at k = 0.250 0.750 0.250
bands n = from 4 to 5
standard GW with PPM
Will sum 84 (b,k,s) states in Sigma_c.
calculation status ( 32 to be completed):
Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
k = 0.250 0.750 0.250
Band E0 <VxcDFT> SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E
4 9.060 -13.805 -16.189 3.661 0.843 -0.187 -12.728 1.077 10.137
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 14.825 -11.453 -5.994 -3.095 0.863 -0.159 -9.414 2.039 16.864
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E^0_gap 5.765
E^GW_gap 6.727
DeltaE^GW_gap 0.962
- Creating HDf5 file with MPI-IO support: t01o_DS5_SIGRES.nc
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getscr/=0, take file _SCR from output of DATASET 2.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 6.000 => boxcut(ratio)= 2.29315
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.887793 Hartrees makes boxcut=2
==== Dense FFT mesh used for densities and potentials ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Reading eigenvalues from: t01o_DS1_WFK , with iomode: IO_MODE_MPI
wfk_read_eigenvalues completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Sorting g-vecs for an output of states on an unique "big" PW basis.
Since the number of g's to be written on file
was 0 or too large, it has been set to the max. value.,
computed from the union of the sets of G vectors for the different k-points.
Number of G-vectors is: 153
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9350000 3.9350000 G(1)= -0.1270648 0.1270648 0.1270648
R(2)= 3.9350000 0.0000000 3.9350000 G(2)= 0.1270648 -0.1270648 0.1270648
R(3)= 3.9350000 3.9350000 0.0000000 G(3)= 0.1270648 0.1270648 -0.1270648
Unit cell volume ucvol= 1.2186085E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 C
2) 0.2500000 0.2500000 0.2500000 Si
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Top of valence: 11.4157 (eV)
Bottom of conduction: 14.8247 (eV)
Fermi level: 13.1202 (eV)
Indirect band gap semiconductor
Fundamental gap: 3.409 (eV)
VBM: 11.416 (eV) at k: [-2.5000E-01, 0.0000E+00, 0.0000E+00]
CBM: 14.825 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 5.765 (eV) at k: [-2.5000E-01, 5.0000E-01, 0.0000E+00]
>>>> For spin 1
Minimum direct gap = 5.7646 [eV], located at k-point : -0.2500 0.5000 0.0000
Fundamental gap = 3.4090 [eV], Top of valence bands at : -0.2500 0.0000 0.0000
Bottom of conduction at : -0.2500 0.5000 0.0000
init_Er_from_file- testing file: t01o_DS2_SCR
SCR file: epsilon^-1 , calculated using inclvkb = 2
TESTPARTICLE RPA
Identifier 4
Kxc kernel 0
Treatment of q-->0 limit 2
headform 80
fform 1004
gwcalctyp 0
Number of components 1 1
Number of q-points 6
Number of q-directions 1
Number of frequencies 2
Number of bands used 10
Dimension of matrix 27
Number of planewaves used 65
Spectral method 0
Test_type 0
Time-ordering 1
Scissor Energy 0.000000E+00
Spectral smearing 1.000000E-01
Complex Imaginary Shift 3.674933E-03
The header contains additional records.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
Optimal value for ng0sh [1, 2, 1]
vcoul_init : cutoff-mode = CRYSTAL
q-points for optical limit: 1
1) 0.000010 0.000020 0.000030
setmesh: npwwfn = 65; Max (m1,m2,m3) = 2 2 2
npweps/npwsigx= 27; Max (mm1,mm2,mm3)= 3 4 3
mG0 added = 1 2 1
calculated ecutwfn = 5.099 [Ha]
calculated ecutsigx/ecuteps = 2.550 [Ha]
using method = 2 with ecuteff = 14.860 [Ha]
Finding a FFT mesh compatible with all the symmetries
setmesh: divisor mesh 1 1 1
setmesh: FFT mesh size selected = 9x 9x 9
total number of points = 729
==== FFT mesh for oscillator strengths used for Sigma_c ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
==== FFT mesh for oscillator strengths used for Sigma_x ====
FFT mesh divisions ........................ 9 9 9
Augmented FFT divisions ................... 9 9 9
FFT algorithm ............................. 512
FFT cache size ............................ 16
Memory needed for Fourier components u(G): 0.0 [Mb] <<< MEM
Storing wavefunctions in double precision array as `enable_gw_dpc="no"`
Recompile the code with `enable_gw_dpc="no"` to halve the memory requirements for the WFs
Memory needed for real-space u(r): 0.1 [Mb] <<< MEM
Memory needed for bks_tab: 0.0 [Mb] <<< MEM
wfd_init completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
wfd_read_wfk: Reading file: t01o_DS1_WFK with iomode: IO_MODE_MPI , master_only: yes
If MPI-IO is too slow, use the command line option `abinit --enforce-fortran-io ...`
to make the master proc read data with Fortran-IO and then broadcast (requires more memory)
About to read: 7 (b, k, s) states in total.
For spin: 1 , will read: 2 k-points.
Reading k-point [1/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
Reading k-point [2/2] spin [1/1] completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
WFK IO completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
planewave contribution to nelect: 8.0000
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.065649
r_s = 1.5378
omega_plasma = 24.7154 [eV]
Total charge density [el/Bohr^3]
Maximum= 2.1987E-01 at reduced coord. 0.0667 0.0667 0.8000
Minimum= 1.1050E-02 at reduced coord. 0.2667 0.2667 0.2000
Integrated= 8.0000E+00
calc_vhxc_braket : calculating v_xc[n_val] (excluding non-linear core corrections)
For spin 1 Min density rhor = 0.110504E-01
E_xc[n_val] = -3.0696 [Ha]. <V_xc[n_val]> = -0.4305 [Ha].
Will calculate 1 <b,k,s|O|b',k,s> matrix elements in calc_vhxc_me.
=== Matrix elements in the KS basis set [eV] ===
kpt= ( -2.50000000E-01 5.00000000E-01 0.00000000E+00) spin= 1:
ib vxc vxcval vhartree
4 -14.32103 -13.80525 6.37050
5 -11.97096 -11.45292 -1.08018
Er%ID: 4 , Er%Hscr%ID: 4
Memory needed for Er%epsm1 = 0.1 [Mb] <<< MEM
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
23.681 40.525 42.115 42.115 43.582 51.388 51.388 54.499 55.035 56.390
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 23.68084860
omega twiddle min location = 1
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
27.279 34.113 35.617 41.171 44.515 46.198 48.409 56.751 58.077 58.665
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 27.27892510
omega twiddle min location = 1
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
29.681 32.781 36.178 36.178 40.070 48.419 56.393 59.508 59.508 69.245
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 29.68118187
omega twiddle min location = 1
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
29.228 32.031 41.781 41.781 43.322 48.100 48.259 48.259 60.784 60.784
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 29.22769843
omega twiddle min location = 1
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
26.263 38.062 38.062 38.447 40.916 49.062 53.192 53.192 56.958 61.417
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 26.26263648
omega twiddle min location = 1
--------------------------------------------------------------------------------
plasmon energies vs q vector shown for lowest 10 bands
29.080 32.483 34.250 35.411 46.119 49.111 50.710 52.832 62.841 68.668
--------------------------------------------------------------------------------
cppm4par : omega twiddle minval [eV] = 29.07971801
omega twiddle min location = 1
SIGMA fundamental parameters:
PLASMON POLE MODEL 4
number of plane-waves for SigmaX 27
number of plane-waves for SigmaC and W 27
number of plane-waves for wavefunctions 65
number of bands 10
number of independent spin polarizations 1
number of spinorial components 1
number of k-points in IBZ 2
number of q-points in IBZ 6
number of symmetry operations 24
number of k-points in BZ 32
number of q-points in BZ 32
number of frequencies for dSigma/dE 5
frequency step for dSigma/dE [eV] 0.25
number of omega for Sigma on real axis 0
max omega for Sigma on real axis [eV] 0.00
zcut for avoiding poles [eV] 0.10
EPSILON^-1 parameters (SCR file):
dimension of the eps^-1 matrix on file 27
dimension of the eps^-1 matrix used 27
number of plane-waves for wavefunctions 65
number of bands 10
number of q-points in IBZ 6
number of frequencies 2
number of real frequencies 1
number of imag frequencies 1
matrix elements of self-energy operator (all in [eV])
Perturbative Calculation
==== Info on the Wfd% object ====
Number of irreducible k-points ........ 2
Number of spinorial components ........ 1
Number of spin-density components ..... 1
Number of spin polarizations .......... 1
Plane wave cutoff energy .............. 6.0
Max number of G-vectors ............... 89
Total number of FFT points ............ 3375
Number of FFT points treated by me .... 3375
==== FFT mesh for wavefunctions ====
FFT mesh divisions ........................ 15 15 15
Augmented FFT divisions ................... 15 15 15
FFT algorithm ............................. 512
FFT cache size ............................ 16
Total number of (b,k,s) states stored by this rank: 7
Memory allocated for Fourier components u(G): 0.0 [Mb] <<< MEM
Memory allocated for real-space u(r): 0.2 [Mb] <<< MEM
Memory needed for wfd%s datastructure: 0.0 [Mb] <<< MEM
Memory needed for wfd%s(0)%k datastructure: 0.0 [Mb] <<< MEM
Memory allocated for Kdata array: 0.0 [Mb] <<< MEM
standard GW with PPM
Perturbative Calculation
Calculating <nk|Sigma_x|nk> at k= 0.250 0.750 0.250
bands from 4 to 5
Will sum 38 (b, k, s) occupied states in Sigma_x.
calc_sigx_me: calculation status (32 to be completed):
calc_sigx_me: ik_bz 1/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 2/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 3/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 4/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 5/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 6/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 7/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 8/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 9/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 10/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 11/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 12/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 13/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 14/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 15/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 16/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 17/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 18/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 19/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 20/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 21/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 22/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 23/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 24/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 25/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 26/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 27/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 28/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 29/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 30/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 31/ 32 done by mpi-rank: 0
calc_sigx_me: ik_bz 32/ 32 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
Calculating <nk|Sigma_c(omega)|nk> at k = 0.250 0.750 0.250
bands n = from 4 to 5
standard GW with PPM
Will sum 84 (b,k,s) states in Sigma_c.
calculation status ( 32 to be completed):
Sigma_c: ik_bz 1/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 2/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 3/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 4/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 5/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 6/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 7/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 8/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 9/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 10/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 11/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 12/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 13/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 14/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 15/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 16/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 17/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 18/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 19/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 20/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 21/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 22/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 23/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 24/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 25/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 26/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 27/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 28/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 29/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 30/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 31/32, spin: 1 done by mpi-rank: 0
Sigma_c: ik_bz 32/32, spin: 1 done by mpi-rank: 0
cpu_time = 0.0, wall_time = 0.0
k = 0.250 0.750 0.250
Band E0 <VxcDFT> SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E
4 9.060 -13.805 -16.189 3.674 0.833 -0.200 -12.730 1.076 10.136
4 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
5 14.825 -11.453 -5.994 -3.079 0.855 -0.170 -9.418 2.034 16.859
5 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
E^0_gap 5.765
E^GW_gap 6.724
DeltaE^GW_gap 0.959
- Creating HDf5 file with MPI-IO support: t01o_DS6_SIGRES.nc
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
These variables are accessible in NetCDF format (t01o_OUT.nc)
acell 7.8700000000E+00 7.8700000000E+00 7.8700000000E+00 Bohr
amu 1.20110000E+01 2.80855000E+01
bdgw3 4 5
bdgw4 4 5
bdgw5 4 5
bdgw6 4 5
ecut 6.00000000E+00 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 2.54958951E+00 Hartree
ecuteps3 0.00000000E+00 Hartree
ecuteps4 0.00000000E+00 Hartree
ecuteps5 0.00000000E+00 Hartree
ecuteps6 0.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 2.54958951E+00 Hartree
ecutsigx4 2.54958951E+00 Hartree
ecutsigx5 2.54958951E+00 Hartree
ecutsigx6 2.54958951E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
enunit 2
etotal1 -1.0129534884E+01
etotal2 0.0000000000E+00
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
etotal5 0.0000000000E+00
etotal6 0.0000000000E+00
fcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getscr1 0
getscr2 0
getscr3 -1
getscr4 -2
getscr5 -3
getscr6 -4
getwfk1 0
getwfk2 -1
getwfk3 -2
getwfk4 -3
getwfk5 -4
getwfk6 -5
gw_icutcoul1 6
gw_icutcoul2 6
gw_icutcoul3 3
gw_icutcoul4 3
gw_icutcoul5 3
gw_icutcoul6 3
jdtset 1 2 3 4 5 6
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptgw3 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw4 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw5 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptgw6 2.50000000E-01 7.50000000E-01 2.50000000E-01
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.57400000E+01
P mkmem 1
natom 2
nband1 15
nband2 10
nband3 10
nband4 10
nband5 10
nband6 10
nbdbuf1 5
nbdbuf2 0
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
ndtset 6
ngfft 15 15 15
nkpt 2
nkptgw1 0
nkptgw2 0
nkptgw3 1
nkptgw4 1
nkptgw5 1
nkptgw6 1
nline1 3
nline2 4
nline3 4
nline4 4
nline5 4
nline6 4
nomegasrd 5
npweps1 0
npweps2 27
npweps3 0
npweps4 0
npweps5 0
npweps6 0
npwsigx1 0
npwsigx2 0
npwsigx3 27
npwsigx4 27
npwsigx5 27
npwsigx6 27
npwwfn1 0
npwwfn2 65
npwwfn3 65
npwwfn4 65
npwwfn5 65
npwwfn6 65
nstep1 20
nstep2 30
nstep3 30
nstep4 30
nstep5 30
nstep6 30
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
occ2 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
omegasrdmax 1.83746627E-02 Hartree
optdriver1 0
optdriver2 3
optdriver3 4
optdriver4 4
optdriver5 4
optdriver6 4
ppmfrq1 0.00000000E+00 Hartree
ppmfrq2 5.00003971E-01 Hartree
ppmfrq3 0.00000000E+00 Hartree
ppmfrq4 0.00000000E+00 Hartree
ppmfrq5 0.00000000E+00 Hartree
ppmfrq6 0.00000000E+00 Hartree
ppmodel1 1
ppmodel2 1
ppmodel3 1
ppmodel4 2
ppmodel5 3
ppmodel6 4
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 -1.2194339464E-05 -1.2194339464E-05 -1.2194339464E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
symsigma 0
tolwfr1 1.00000000E-16
tolwfr2 0.00000000E+00
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
typat 1 2
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0411561579E+00 1.0411561579E+00 1.0411561579E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9675000000E+00 1.9675000000E+00 1.9675000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000 14.00000
================================================================================
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
Proc. 0 individual time (sec): cpu= 2.0 wall= 11.6
Calculation completed.
.Delivered 0 WARNINGs and 7 COMMENTs to log file.
--- !FinalSummary
program: abinit
version: 9.6.2
start_datetime: Tue Feb 08 12:41:57 2022
end_datetime: Tue Feb 08 12:42:08 2022
overall_cpu_time: 36.2
overall_wall_time: 46.0
exit_requested_by_user: no
timelimit: 0
pseudos:
C : 6bf6ca08f4034aa8d90b0c6757b7adb1
Si : 3916b143991b1cfa1542b130be320e5e
usepaw: 0
mpi_procs: 4
omp_threads: 1
num_warnings: 0
num_comments: 7
...
Test completed, rc=0, overall_wall_time: 46.0